【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個(gè)交點(diǎn)分別是A、B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求A、B的坐標(biāo);
(2)利用函數(shù)圖象,寫出y<0時(shí),x的取值范圍.
【答案】(1)A(-3,0),B(2,0);(2)或.
【解析】
(1)令y=0代入y=x2+x-6即可求出x的值,此時(shí)x的值分別是A、B兩點(diǎn)的橫坐標(biāo).
(2)根據(jù)圖象可知:y<0是指x軸下方的圖象,根據(jù)A、B兩點(diǎn)的坐標(biāo)即可求出x的范圍.
(1)令y=0,得:x2+x6=0,
解得:x=3或x=2,
∵點(diǎn)A在點(diǎn)B的左側(cè),
∴點(diǎn)A.B的坐標(biāo)分別為(3,0)、(2,0);
(2)由函數(shù)圖象知,當(dāng)3<x<2時(shí),函數(shù)圖象位于x軸下方,即y<0,
∴y<0時(shí),3<x<2.
∵當(dāng)y<0時(shí),x的取值范圍為:3<x<2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓0的直徑AB垂直于弦CD于點(diǎn)E,CG是圓O的切線交AB的延長線于點(diǎn)G,連接CO并延長交AD于點(diǎn)F,且CFAD.
(1)試問:CG//AD嗎?說明理由:
(2)證明:點(diǎn)E為OB的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CD⊥AB與點(diǎn)D,E為圓外一點(diǎn),EO⊥AB,與BC交于點(diǎn)G,與圓O交于點(diǎn)F,連接EC,且EG=EC.
(1)求證:EC是圓O的切線;
(2)當(dāng)∠ABC=22.5°時(shí),連接CF.
①求證:AC=CF;
②若AD=1,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個(gè)30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價(jià)為40元時(shí),平均每月售出600個(gè);若售價(jià)每上漲1元,其月銷售量就減少20個(gè),若售價(jià)每下降1元,其月銷售量就增加200個(gè).
(1)若售價(jià)上漲m元,每月能售出 個(gè)排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個(gè)該規(guī)格的排球,并決定整個(gè)11月份進(jìn)行降價(jià)促銷,問售價(jià)定為多少元時(shí),能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為﹣1、3,則下列結(jié)論:①abc<0;②2a+b=0;③3a+2c>0;④對于任意x均有ax2﹣a+bx﹣b≥0,正確個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動(dòng)點(diǎn)P從點(diǎn)A開始沿折線AC-CB-BA運(yùn)動(dòng),點(diǎn)P在AC,CB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位.直線l從與AC重合的位置開始,以每秒個(gè)單位的速度沿CB方向移動(dòng),移動(dòng)過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)t=5秒時(shí),點(diǎn)P走過的路徑長為_________;當(dāng)t=_________秒時(shí),點(diǎn)P與點(diǎn)E重合;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動(dòng)時(shí),連結(jié)PE,并過點(diǎn)E作AB的垂線,垂足為H. 若以C、P、E為頂點(diǎn)的三角形與△EFH相似,試求線段EH的值;
(3)當(dāng)點(diǎn)P在折線AC-CB-BA上運(yùn)動(dòng)時(shí),作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)Q.在運(yùn)動(dòng)過程中,若形成的四邊形PEQF為菱形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(diǎn)(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結(jié)論個(gè)數(shù)是 ( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時(shí),求H點(diǎn)的坐標(biāo).
(2)當(dāng)α=60°時(shí),ΔCBD是什么特殊的三角形?說明理由.
(3)當(dāng)AH=HC時(shí),求直線HC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線 (k>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則Bn的坐標(biāo)是__________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com