【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,點C在圓上,∠CAB=30°.
(1)求證:DC是⊙O的切線.
(2)若BD=1cm,求AC的長.
【答案】
(1)證明:連接OC、BC,如圖,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OA=OC,
∴∠OCA=∠A=30°,
∴∠COB=∠A+∠OCA=60°,
∵OC=OB,
∴△OBC 是等邊三角形,
∴∠OCB=∠OBC=60°,
又∵BD=OB,
∴∠BDC=∠BCD,
而∠OBC=∠BDC+∠BCD,
∴∠BCD=30°,
∴∠OCD=∠OCB+∠BCD=90°,
∴OC⊥CD,
∴DC是⊙O的切線
(2)解:OB=BD=BC=1,
在Rt△ABC中,∴∠A=30°,
∴AC= BC= cm
【解析】(1)連接OC、BC,如圖,利用圓周角定理得到∠ACB=90°,則可計算出∠COB=60°,于是可判斷△OBC 是等邊三角形,則∠OCB=∠OBC=60°,再利用等腰三角形的性質(zhì)和三角形外角性質(zhì)計算出∠BCD=30°,從而得到∠OCD=90°,然后根據(jù)切線的判定定理可得到結(jié)論;(2)利用等邊三角形的性質(zhì)得OB=BD=BC=1,然后在Rt△ABC中利用含30度的直角三角形三邊的關(guān)系可計算出AC.
【考點精析】根據(jù)題目的已知條件,利用圓周角定理和切線的判定定理的相關(guān)知識可以得到問題的答案,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點E在正方形ABCD外,BE=4,CE=2,∠BEC=135°,將△BEC繞點B逆時針旋轉(zhuǎn)得到△BFA,求FE,F(xiàn)C的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點中心對稱,已知A,D1 , D三點的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)求對稱中心的坐標(biāo).
(2)寫出頂點B,C,B1 , C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠A=70°,將平行四邊形ABCD繞點B順時針旋轉(zhuǎn)到平行四邊形A1BC1D1的位置,此時C1D1恰好經(jīng)過點C,則∠ABA1=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若平行四邊形ABCD的一個角的平分線把一條邊分成長是4cm和5cm的兩條線段,則平行四邊形ABCD的周長是__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進一批單價為16元的日用品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格.經(jīng)試驗發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件;若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數(shù)y(件)是價格x(元/件)的一次函數(shù).
(1)試求y與x之間的關(guān)系式;
(2)在商品不積壓,且不考慮其它因素的條件下,問銷售價格定為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少(總利潤=總收入﹣總成本)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組計劃做一批“中國結(jié)”,如果每人做5個,那么比計劃多了9個;如果每人做4個,那么比計劃少15個.該小組共有多少人?計劃做多少個“中國結(jié)”?
根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:
小明:5x□( 。=4x□( ); 小紅: .
(1)根據(jù)小明、小紅所列的方程,其中“□”中是運算符號,“( 。中是數(shù)字,請你分別指出未知數(shù)x、y表示的意義.
小明所列的方程中x表示 ,
小紅所列的方程中y表示 ;
(2)請選擇小明、小紅中任意一種方法,完整的解答該題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點A,B對應(yīng)的數(shù)分別為﹣1、3,點P為數(shù)軸上一動點.
(1)若點P到點A、點B的距離相等,寫出點P對應(yīng)的數(shù) ;
(2)若點P到點A,B的距離之和為6,那么點P對應(yīng)的數(shù) ;
(3)點A,B分別以2個單位長度/分、1個單位長度/分的速度向右運動,同時P點以6個單位長度/分的速度從O點向左運動.當(dāng)遇到A時,點P立刻以同樣的速度向右運動,并不停地往返于點A與點B之間,求當(dāng)點A與點B重合時,點P所經(jīng)過的總路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級兩個班,各選派名學(xué)生參加學(xué)校舉行的“漢字聽寫”大賽預(yù)賽,各參賽選手的成績?nèi)缦拢?/span>
班:,,,,,,,,,
班:,,,,,,,,,
通過整理,得到數(shù)據(jù)分析表如下:
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
班 | |||||
班 |
直接寫出表中、、的值;
依據(jù)數(shù)據(jù)分析表,有人說:“最高分在班,班的成績比班好”,但也有人說班的成績要好,請給出兩條支持班成績好的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com