【題目】某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別切于點A、B,已知∠CO2D=60°,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24cm,設⊙O1的半徑為xcm,
(1)用含x的代數(shù)式表示扇形O2CD的半徑;
(2)若⊙O1和扇形O2CD兩個區(qū)域的制作成本分別為0.45元/cm2和0.06元/cm2,當⊙O1的半徑為多少時,該玩具的制作成本最?
【答案】(1)扇形O2CD的半徑為(24-3x)cm;(2)當⊙O1的半徑為4cm時,該玩具的制作成本最。
【解析】
(1)連接O1A.利用切線的性質知∠AO2O1=∠CO2D=30°;然后在Rt△O1AO2中利用“30°角所對的直角邊是斜邊的一半”求得O1O2=2xcm;最后由圖形中線段間的和差關系求得扇形O2CD的半徑FO2為:EF-EO1-O1O2=(24-3x)cm;
(2)設該玩具的制作成本為y元,則根據圓形的面積公式和扇形的面積公式列出y與x間的函數(shù)關系,然后利用二次函數(shù)的最值即可求得結果.
解:(1)連接O1A.
∵⊙O1與O2C、O2D分別切一點A、B,
∴O1A⊥O2C,O2E平分∠CO2D,
∴∠AO2O1=∠CO2D=30°,
∴在Rt△O1AO2中,O1O2=2AO1=2x cm.
∴FO2=EF-EO1-O1O2=(24-3x)cm,
即扇形O2CD的半徑為(24-3x)cm.
(2)設該玩具的制作成本為y元,則
y=0.45πx2+0.06×=0.9πx2-7.2πx+28.8π=0.9π(x-4)2+14.4π,
所以當x=4時,y的值最。
答:當⊙O1的半徑為4cm時,該玩具的制作成本最小.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線y=﹣x2+x+2與x軸交于A、B兩點,與y軸交于C點,拋物線的頂點為Q,連接BC.
(1)求直線BC的解析式;
(2)點P是直線BC上方拋物線上的一點,過點P作PD⊥BC于點D,在直線BC上有一動點M,當線段PD最大時,求PM+MB最小值;
(3)如圖②,直線AQ交y軸于G,取線段BC的中點K,連接OK,將△GOK沿直線AQ平移得△G′O'K′,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y′,當拋物線y′經過點Q時,記頂點為Q′,是否存在以G'、K'、Q'為頂點的三角形是等腰三角形?若存在,求出點G′的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線y=﹣x+2與x軸交于點B,與y軸交于點C,拋物線y=-x2+bx+c經過B、C兩點,點P是拋物線上的一個動點,過點P作PQ⊥x軸,垂足為Q,交直線y=﹣x+2于點D.設點P的橫坐標為m.
(1)求該拋物線的函數(shù)表達式;
(2)若以P、D、O、C為頂點的四邊形是平行四邊形,求點Q的坐標;
(3)如圖2,當點P位于直線BC上方的拋物線上時,過點P作PE⊥BC于點E,求當PE取得最大值時點P的坐標,并求PE的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A、B的坐標分別為
A(6,0)、B(0,2),以AB為斜邊在右上方作Rt△ABC.設點C坐標為(x,y),則(x+y)的最大值為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】紅樹林學校在七年級新生中舉行了全員參加的“防溺水”安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學的成績(單位:分),收集數(shù)據如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據:
分數(shù) 人數(shù) 班級 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據以上信息回答下列問題:
(1)請直接寫出表格中的值;
(2)比較這三組樣本數(shù)據的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;
(3)為了讓學生重視安全知識的學習,學校將給競賽成績滿分的同學頒發(fā)獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,直線,所成的角跑到畫板外面去了,你有什么辦法作出這兩條直線所成角的角平分線?
小明的做法是:
(1)如圖2,畫;
(2)以為圓心,任意長為半徑畫圓弧,分別交直線,于點,;
(3)連結并延長交直線于點;
請你先完成下面的證明,然后完成第(4)步作圖:
∵
∴( )
∵以為圓心,任意長為半徑畫圓弧,分別交直線,于點,
∴
∴
∴
∴以直線,的交點和點、為頂點所構成的三角形為等腰三角形( )
根據上面的推理證明完成第(4)步作圖
(4)請在圖2畫板內作出“直線,所成的跑到畫板外面去的角”的平分線(畫板內的部分),尺規(guī)作出圖形,并保留作圖痕跡.
第(4)步這么作圖的理論依據是: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在和中,,,,點,,分別是,,的中點,連接,.
(1)如圖①,,點在上,則 ;
(2)如圖②,,點不在上,判斷的度數(shù),并證明你的結論;
(3)連接,若,,固定,將繞點旋轉,當的長最大時,的長為 (用含的式子表示).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com