【題目】已知關(guān)于的方程x2+2x+m﹣2=0.
(1)若該方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)當該方程的一個根為1時,求m的值及方程的另一根.
【答案】
(1)解:依題意得:△=b2﹣4ac=22﹣4×1×(m﹣2)=12﹣4m>0,
解得:m<3.
∴若該方程有兩個不相等的實數(shù)根,實數(shù)m的取值范圍為m<3
(2)解:設(shè)方程的另一根為x1,
由根與系數(shù)的關(guān)系得: ,
解得: ,
∴m的值為﹣1,該方程的另一根為﹣3
【解析】(1)由方程有兩個不相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍;(2)設(shè)方程的另一根為x1 , 由根與系數(shù)的關(guān)系即可得出關(guān)于m、x1的二元一次方程組,解之即可得出結(jié)論.
【考點精析】掌握求根公式和根與系數(shù)的關(guān)系是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 ( )
①2∠DCF=∠BCD; ②EF=CF; ③S△BEC=2S△CEF; ④∠DFE=3∠AEF.
A. ①②③④ B. ①②④ C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司開發(fā)出一種軟件,從研發(fā)到年初上市后,經(jīng)歷了從虧損到盈利的過程,如圖中的圖象是拋物線的一段,它刻畫了該軟件上市以來累積利潤S(萬元)與銷售時間t(月)之間的函數(shù)關(guān)系(即前t個月的利潤總和S與t之間的函數(shù)關(guān)系),根據(jù)圖象提供的信息,解答下列問題:
(1)該種軟件上市第幾個月后開始盈利?
(2)求累積利潤S(萬元)與時間t(月)之間的函數(shù)表達式;
(3)截止到幾月末,公司累積利潤達到30萬元?
(4)求公司第6個月末所累積的利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,若正方形CDEF的邊長為2,則圖中陰影部分的面積為( )
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知, , 與成正比例, 與成反比例,并且當時, ,當時, .
()求關(guān)于的函數(shù)關(guān)系式.
()當時,求的值.
【答案】();(), .
【解析】分析:(1)首先根據(jù)與x成正比例, 與x成反比例,且當x=1時,y=4;當x=2時,y=5,求出 和與x的關(guān)系式,進而求出y與x的關(guān)系式,(2)根據(jù)(1)問求出的y與x之間的關(guān)系式,令y=0,即可求出x的值.
本題解析:
()設(shè), ,
則,
∵當時, ,當時, ,
∴
解得, ,
∴關(guān)于的函數(shù)關(guān)系式為.
()把代入得,
,
解得: , .
點睛:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:(1)設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=kx(k為常數(shù),k≠0);(2)把已知條件(自變量與對應(yīng)值)代入解析式,得到待定系數(shù)的方程;(3)解方程,求出待定系數(shù);(4)寫出解析式.
【題型】解答題
【結(jié)束】
24
【題目】如圖,菱形的對角線、相交于點,過點作且,連接、,連接交于點.
(1)求證:;
(2)若菱形的邊長為2, .求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2 ,求⊙O 的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.
調(diào)查結(jié)果統(tǒng)計表
組別 | 分組(單位:元) | 人數(shù) |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有__人,a+b=__,m=___;
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正確的是(填編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com