【題目】如圖,正方形ABCD的邊長為1.對角線ACBD相交于點(diǎn)O,PBC延長線上的一點(diǎn),APBD于點(diǎn)E,交CD于點(diǎn)H,OPCD于點(diǎn)F,且EFAC平行.

1)求證:EFBD

2)求證:四邊形ACPD為平行四邊形.

3)求OF的長度.

【答案】1)見解析;(2)見解析;(3.

【解析】

1)根據(jù)正方形的性質(zhì)求出ACBD,即可得出答案;

2)根據(jù)平行線得出,求出ACDP,根據(jù)平行四邊形的判定推出即可;

3)求出OEEF的長,再根據(jù)勾股定理求出即可.

1)證明:∵四邊形ABCD是正方形,

ACBD,

EFAC,

EFBD

2)證明:

EFAC,

,

∵四邊形ABCD是正方形,

ADCP,OAOC,

,

,

AODP,

ADCP,

∴四邊形ACPD為平行四邊形;

3)解:由勾股定理得:ACBD,

∵四邊形ACPD為平行四邊形,

CPADBC

,

ADBP

,

DEBDOEODDE

DOBD,

∵∠DEF=∠DOC90°﹣∠EDF45°,

∴∠DFE45°

EFDE,

RtOEF中,由勾股定理得:OF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖像與x軸交于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CABC的面積為12

1)求這個二次函數(shù)的解析式;

2)點(diǎn)D的坐標(biāo)為,點(diǎn)P在二次函數(shù)的圖像上,∠ADP為銳角,且,請直接寫出點(diǎn)P的橫坐標(biāo);

3)點(diǎn)Ex軸的正半軸上,,點(diǎn)O與點(diǎn)關(guān)于EC所在直線對稱,過點(diǎn)O的垂線,垂足為點(diǎn)N,ONEC交于點(diǎn)M.若,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2022年將在北京﹣﹣張家口舉辦冬季奧運(yùn)會,北京將成為世界上第一個既舉辦夏季奧運(yùn)會,又舉辦冬季奧運(yùn)會的城市,某校開設(shè)了冰球選修課,12名同學(xué)被分成甲、乙兩組進(jìn)行訓(xùn)練,他們的身高(單位:cm)如表所示:

隊(duì)員1

隊(duì)員1

隊(duì)員1

隊(duì)員1

隊(duì)員1

隊(duì)員1

甲組

176

177

175

176

177

175

乙組

178

175

170

174

183

176

設(shè)兩隊(duì)隊(duì)員身高的平均數(shù)依次為,,方差依次為,,下列關(guān)系中正確的是( )

A.,B.,

C.,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠的甲、乙兩個車間各生產(chǎn)了400個新款產(chǎn)品,為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍在165≤x180為合格),分別從甲、乙兩個車間生產(chǎn)的產(chǎn)品中隨機(jī)各抽取了20個樣品迸行檢測,獲得了它們的數(shù)據(jù)(尺寸),并對數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息:

a.甲車間產(chǎn)品尺寸的扇形統(tǒng)計(jì)圖如下(數(shù)據(jù)分為6組:165≤x170,170≤x175

175≤x180,180≤x185,185≤x190,190≤x≤195)

b.甲車間生產(chǎn)的產(chǎn)品尺寸在175≤x180這一組的是:

175 176 176 177 177 178 178 179 179

c.甲、乙兩車間生產(chǎn)產(chǎn)品尺寸的平均數(shù)、中位數(shù)、眾數(shù)如下:

車間

平均數(shù)

中位數(shù)

眾數(shù)

甲車間

178

m

183

乙車間

177

182

184

根據(jù)以上信息,回答下列問題:

1)表中m的值為 ;

2)此次檢測中,甲、乙兩車間生產(chǎn)的產(chǎn)品合格率更高的是 (填),理由是 ;

3)如果假設(shè)這個工廠生產(chǎn)的所有產(chǎn)品都參加了檢測,那么估計(jì)甲車間生產(chǎn)該款新產(chǎn)品中合格產(chǎn)品有 個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)Pm,n)在反比例函數(shù)的圖象上.

1)若mk,nk2,則k_____

2)若m+nk,OP2,且此反比例函數(shù),滿足:當(dāng)x0時,yx的增大而減小,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點(diǎn),求APC的面積的最大值及此時點(diǎn)P的坐標(biāo);

3)在對稱軸上是否存在一點(diǎn)M,使ANM的周長最小.若存在,請求出M點(diǎn)的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張三角形紙片ABC,其中∠C = 90°,AC = 6BC = 8.如果小明同學(xué)將紙片做了兩次折疊.第一次使點(diǎn)A落在C處,在紙片上的折痕長記為m;然后將紙片展平做第二次折疊,使點(diǎn)A落在B處,在紙片上的折痕長記為n.那么m,n之間的關(guān)系是m_____n.(填,“=”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),頂點(diǎn)坐標(biāo),與軸的交點(diǎn)在點(diǎn)與點(diǎn)之間(包含端點(diǎn)),則下列結(jié)論正確的是(

A.

B.

C.為任意實(shí)數(shù))

D.方程有兩個不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,過點(diǎn)、分別作的垂線與過點(diǎn)的直線交于、兩點(diǎn).

1)如圖1,求證:;

2)如圖2,連接相交于點(diǎn),在不添加任何輔助線的情況下,請寫出圖2中的四對三角形,使寫出的每對三角形面積相等.

查看答案和解析>>

同步練習(xí)冊答案