已知函數(shù)數(shù)學(xué)公式,當(dāng)m為何值時,這個函數(shù)是一次函數(shù),并且圖象經(jīng)過第二、三、四象限?

解:∵函數(shù)是一次函數(shù),
∴m-1≠0,即m≠1,且m2-m-1=1,即m2-m-2=0,(m-2)(m+1)=0,即m=2或-1;
又∵圖象經(jīng)過第二、三、四象限,
∴m-1<0,且m<0,得到m<0,
綜上所述,當(dāng)m=-1時,這個函數(shù)是一次函數(shù),并且圖象經(jīng)過第二、三、四象限.
分析:要滿足為一次函數(shù),則m-1≠0,且m2-m-1=1,即m2-m-2=0,解得m=2或-1;由因為圖象經(jīng)過第二、三、四象限,則m-1<0,且m<0;最后得到滿足條件的m的值.
點評:本題考查了一次函數(shù)y=kx+b(k≠0,k,b為常數(shù))的性質(zhì).它的圖象為一條直線,當(dāng)k>0,圖象經(jīng)過第一,三象限,y隨x的增大而增大;當(dāng)k<0,圖象經(jīng)過第二,四象限,y隨x的增大而減;當(dāng)b>0,圖象與y軸的交點在x軸的上方;當(dāng)b=0,圖象過坐標原點;當(dāng)b<0,圖象與y軸的交點在x軸的下方.同時考查了一次函數(shù)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蓮都區(qū)模擬)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知OA:OB=1:5,OB=OC,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)點P(2,-3)是拋物線對稱軸上的一點,在線段OC上有一動點M,以每秒2個單位的速度從O向C運動,(不與點O,C重合),過點M作MH∥BC,交X軸于點H,設(shè)點M的運動時間為t秒,試把△PMH的面積S表示成t的函數(shù),當(dāng)t為何值時,S有最大值,并求出最大值;
(3)設(shè)點E是拋物線上異于點A,B的一個動點,過點E作x軸的平行線交拋物線于另一點F.以EF為直徑畫⊙Q,則在點E的運動過程中,是否存在與x軸相切的⊙Q?若存在,求出此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽省毫州市風(fēng)華中學(xué)九年級第四次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知∆ABC中,,,D是AB上一動點,DE∥BC,交AC于E,將四邊形BDEC沿DE向上翻折,得四邊形,與AB、AC分別交于點M、N.

(1)證明:△ADE;
(2)設(shè)AD為x,梯形MDEN的面積為y,試求y與x的函數(shù)關(guān)系式. 當(dāng)x為何值時y有最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣西柳州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知OA:OB=1:5,OB=OC,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)點P(2,-3)是拋物線對稱軸上的一點,在線段OC上有一動點M,以每秒2個單位的速度從O向C運動,(不與點O,C重合),過點M作MH∥BC,交X軸于點H,設(shè)點M的運動時間為t秒,試把△PMH的面積S表示成t的函數(shù),當(dāng)t為何值時,S有最大值,并求出最大值;
(3)設(shè)點E是拋物線上異于點A,B的一個動點,過點E作x軸的平行線交拋物線于另一點F.以EF為直徑畫⊙Q,則在點E的運動過程中,是否存在與x軸相切的⊙Q?若存在,求出此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,當(dāng)k為何值時,正比例函數(shù)y隨x的增大而減小?

查看答案和解析>>

同步練習(xí)冊答案