【題目】(2017南寧,第26題,10分)如圖,已知拋物線與坐標(biāo)軸交于A,B,C三點(diǎn),其中C(0,3),∠BAC的平分線AE交y軸于點(diǎn)D,交BC于點(diǎn)E,過(guò)點(diǎn)D的直線l與射線AC,AB分別交于點(diǎn)M,N.
(1)直接寫(xiě)出a的值、點(diǎn)A的坐標(biāo)及拋物線的對(duì)稱軸;
(2)點(diǎn)P為拋物線的對(duì)稱軸上一動(dòng)點(diǎn),若△PAD為等腰三角形,求出點(diǎn)P的坐標(biāo);
(3)證明:當(dāng)直線l繞點(diǎn)D旋轉(zhuǎn)時(shí),均為定值,并求出該定值.
【答案】(1)a=,A(﹣,0),拋物線的對(duì)稱軸為x=;(2)點(diǎn)P的坐標(biāo)為(,0)或(,﹣4);(3).
【解析】試題分析:(1)由點(diǎn)C的坐標(biāo)為(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到關(guān)于x的方程,解關(guān)于x的方程可得到點(diǎn)A和點(diǎn)B的坐標(biāo),最后利用拋物線的對(duì)稱性可確定出拋物線的對(duì)稱軸;
(2)利用特殊銳角三角函數(shù)值可求得∠CAO=60°,依據(jù)AE為∠BAC的角平分線可求得∠DAO=30°,然后利用特殊銳角三角函數(shù)值可求得OD=1,則可得到點(diǎn)D的坐標(biāo).設(shè)點(diǎn)P的坐標(biāo)為(,a).依據(jù)兩點(diǎn)的距離公式可求得AD、AP、DP的長(zhǎng),然后分為AD=PA、AD=DP、AP=DP三種情況列方程求解即可;
(3)設(shè)直線MN的解析式為y=kx+1,接下來(lái)求得點(diǎn)M和點(diǎn)N的橫坐標(biāo),于是可得到AN的長(zhǎng),然后利用特殊銳角三角函數(shù)值可求得AM的長(zhǎng),最后將AM和AN的長(zhǎng)代入化簡(jiǎn)即可.
試題解析:(1)∵C(0,3),∴﹣9a=3,解得:a=.
令y=0得:,∵a≠0,∴,解得:x=﹣或x=,∴點(diǎn)A的坐標(biāo)為(﹣,0),B(,0),∴拋物線的對(duì)稱軸為x=.
(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.
∵AE為∠BAC的平分線,∴∠DAO=30°,∴DO=AO=1,∴點(diǎn)D的坐標(biāo)為(0,1).
設(shè)點(diǎn)P的坐標(biāo)為(,a).
依據(jù)兩點(diǎn)間的距離公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.
當(dāng)AD=PA時(shí),4=12+a2,方程無(wú)解.
當(dāng)AD=DP時(shí),4=3+(a﹣1)2,解得a=0或a=2(舍去),∴點(diǎn)P的坐標(biāo)為(,0).
當(dāng)AP=DP時(shí),12+a2=3+(a﹣1)2,解得a=﹣4,∴點(diǎn)P的坐標(biāo)為(,﹣4).
綜上所述,點(diǎn)P的坐標(biāo)為(,0)或(,﹣4).
(3)設(shè)直線AC的解析式為y=mx+3,將點(diǎn)A的坐標(biāo)代入得:,解得:m=,∴直線AC的解析式為.
設(shè)直線MN的解析式為y=kx+1.
把y=0代入y=kx+1得:kx+1=0,解得:x=,∴點(diǎn)N的坐標(biāo)為(,0),∴AN==.
將與y=kx+1聯(lián)立解得:x=,∴點(diǎn)M的橫坐標(biāo)為.
過(guò)點(diǎn)M作MG⊥x軸,垂足為G.則AG=.
∵∠MAG=60°,∠AGM=90°,∴AM=2AG==,∴= == =.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:方程組的解x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)化簡(jiǎn)|a-3|+|a+2|;
(3)在a的取值范圍中,當(dāng)a為何整數(shù)時(shí),不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要從甲、乙兩名同學(xué)中選出一名,代表班級(jí)參加射擊比賽. 現(xiàn)將甲、乙兩名同學(xué)參加射擊訓(xùn)練的成績(jī)繪制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差() | |
甲 | 7 | 7 | 1. 2 | |
乙 | 7. 5 | 4. 2 |
(1)分別求表格中、、的值.
(2)如果其他參賽選手的射擊成績(jī)都在7環(huán)左右,應(yīng)該選______隊(duì)員參賽更適合;如果其他參賽選手的射擊成績(jī)都在8環(huán)左右,應(yīng)該選______隊(duì)員參賽更適合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一期間,甲、乙兩人分別騎自行車和摩托車從地出發(fā)前往地郊游,并以各自的速度勻速行駛,到達(dá)目的地停止,途中乙休息了一段時(shí)間,然后又繼續(xù)趕路.甲、乙兩人各自行駛的路程與所用時(shí)間之間的函數(shù)圖象如圖所示.
(1)甲騎自行車的速度是_____.
(2)求乙休息后所行的路程與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(3)為了保證及時(shí)聯(lián)絡(luò),甲、乙兩人在第一次相遇時(shí)約定此后兩人之間的路程不超過(guò).甲、乙兩人是否符合約定,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)數(shù)軸上的點(diǎn)進(jìn)行如下操作:先把點(diǎn)表示的數(shù)乘以,再把所得數(shù)對(duì)應(yīng)的點(diǎn)沿?cái)?shù)軸向右平移個(gè)單位長(zhǎng)度,得到點(diǎn).稱這樣的操作為點(diǎn)的“倍移”,對(duì)數(shù)軸上的點(diǎn),, ,進(jìn)行“倍移”操作得到的點(diǎn)分別為,,,.
(1)當(dāng),時(shí),
①若點(diǎn)表示的數(shù)為,則它的對(duì)應(yīng)點(diǎn)表示的數(shù)為 .若點(diǎn)表示的數(shù)是,則點(diǎn)表示的數(shù)為 ; ②數(shù)軸上的點(diǎn)表示的數(shù)為1,若,則點(diǎn)表示的數(shù)為 ;
(2)當(dāng)時(shí),若點(diǎn)
(3)若線段,請(qǐng)寫(xiě)出你能由此得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2,求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫(xiě)出DE的長(zhǎng)為 .(只填結(jié)果,不用寫(xiě)計(jì)算過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅駕車從甲地到乙地,兩地相距500千米,汽車出發(fā)前油箱有油25升,途中加油若干升,加油前、后汽車都以100千米/小時(shí)的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系如圖所示.以下說(shuō)法錯(cuò)誤的是
A.加油前油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))的函數(shù)關(guān)系是y=﹣8t+25
B.途中加油21升
C.汽車加油后還可行駛4小時(shí)
D.汽車到達(dá)乙地時(shí)油箱中還余油6升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC中,BC=6,D、E分別在BC、AC上,且DE∥AC,MN是△BDE的中位線.將線段DE從BD=2處開(kāi)始向AC平移,當(dāng)點(diǎn)D與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),則在運(yùn)動(dòng)過(guò)程中線段MN所掃過(guò)的區(qū)域面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察如圖圖形,把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1),對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,……,據(jù)此解答下面的問(wèn)題
(1)填寫(xiě)下表:
圖形 | 挖去三角形的個(gè)數(shù) |
圖形1 | 1 |
圖形2 | 1+3 |
圖形3 | 1+3+9 |
圖形4 |
|
(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)wn;(用含n的代數(shù)式表示)
(3)若圖n+1中挖去三角形的個(gè)數(shù)為wn+1,求wn+1﹣Wn
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com