【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等.
… |
(1)可求得 ,第個格子中的數(shù)為 ;
(2)若前個格子中所填整數(shù)之和,則的值為多少?若的值為多少?
(3)若,則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD≌△CDB,且AB,CD是對應(yīng)邊.下面四個結(jié)論中不正確的是( )
A. △ABD和△CDB的面積相等B. △ABD和△CDB的周長相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃購買排球、籃球,已知購買1個排球與1個籃球的總費用為180元;3個排球與2個籃球的總費用為420元.
(1)求購買1個排球、1個籃球的費用分別是多少元?
(2)若該學(xué)校計劃購買此類排球和籃球共60個,并且籃球的數(shù)量不超過排球數(shù)量的2倍.求至少需要購買多少個排球?并求出購買排球、籃球總費用的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某摩托車廠家本周計劃每天生產(chǎn)300輛摩托車,由于工廠實行輪休,每天上班人數(shù)不一定相等,實際每天生產(chǎn)與計劃相比情況如下表:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 | ﹣5 | +7 | ﹣3 | +4 | +10 | ﹣9 | ﹣25 |
(1)本周六生產(chǎn)了多少輛摩托車?
(2)本周總產(chǎn)量與計劃相比是增加了還是減少了?具體數(shù)量是多少?產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求證:BD⊥CB;
(2)求四邊形 ABCD 的面積;
(3)如圖 2,以 A 為坐標(biāo)原點,以 AB、AD所在直線為 x軸、y軸建立直角坐標(biāo)系,
點P在y軸上,若 S△PBD=S四邊形ABCD,求 P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】漁夫在靜水劃船總是每小時5里,現(xiàn)在逆水行舟,水流速度是每小時3里;一陣風(fēng)把他帽子吹落在水中,假如他沒有發(fā)現(xiàn),繼續(xù)向前劃行;等他發(fā)覺時人與帽子相距2.5里;
于是他立即原地調(diào)頭追趕帽子,原地調(diào)轉(zhuǎn)船頭用了10分鐘.
計算:
(1)求順?biāo)俣,逆水速度是多少?/span>
(2)從帽子丟失到發(fā)覺經(jīng)過了多少時間?
(3)從發(fā)覺帽子丟失到撿回帽子經(jīng)過了多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將長為10的線段OA繞點O旋轉(zhuǎn)90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.
發(fā)現(xiàn):∠POQ=________時,PQ有最大值,最大值為________;
思考:(1)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;
(2)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應(yīng)點B′恰好落在OA的延長線上,求陰影部分面積;
探究:如圖4,將扇形OAB沿PQ折疊,使折疊后的弧QB′恰好與半徑OA相切,切點為C,若OP=6,求點O到折痕PQ的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.在△ABC中,∠ACB=90°,點P為△ABC內(nèi)一點.
(1)連接PB、PC,將△BCP沿射線CA方向平移,得到△DAE,點B、C、P的對應(yīng)點分別為點D、A、E,連接CE.
①依題意,請在圖2中補全圖形;
②如果BP⊥CE,AB+BP=9,CE=,求AB的長.
(2)如圖3,以點A為旋轉(zhuǎn)中心,將△ABP順時針旋轉(zhuǎn)60°得到△AMN,連接PA、PB、PC,當(dāng)AC=4,AB=8時,根據(jù)此圖求PA+PB+PC的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com