如圖,在△ABC中,AB=AC,D是底邊BC上一點(diǎn),E是線段AD上一點(diǎn)且∠BED=2∠CED=∠A.求證:BD=2CD.

【答案】分析:首先作DO∥AB交AC于O,得出O為△EDC的外心,進(jìn)而得出△ACE∽△ADF,即有=,即可得出△ADO∽△ABE,
即可得出BD=2CD.
解答:證明:作DO∥AB交AC于O.
則由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,
所以O(shè)為△EDC的外心,
取F為△EDC的外接圓與AC的交點(diǎn),連接DF,則OF=OC=OD,∠ACE=∠ADF.
所以△ACE∽△ADF,即有=
再由DO∥AB,∠ADO=∠BAE,
∠AOD=180-∠DOC=180°-∠A=180°-∠BED=∠AEB,
所以△ADO∽△ABE,
即得===
故AF=OD=OC=CF,從而AO=2OC.
由DO∥AB,得:BD=2CD.
點(diǎn)評(píng):此題主要考查了等腰三角形有關(guān)知識(shí),以及同圓中同角所對(duì)的弦之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案