【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)直方圖;
(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分?jǐn)?shù)段內(nèi);
(4)選拔賽中,成績?cè)?/span>94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請(qǐng)用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.
【答案】(1)8,0.35;(2)見解析;(3)89.5~94.5;(4).
【解析】
(1)根據(jù)頻數(shù)=總數(shù)×頻率可求得m的值,利用頻率=頻數(shù)÷總數(shù)可求得n的值;
(2)根據(jù)m的值補(bǔ)全直方圖即可;
(3)根據(jù)中位數(shù)的概念進(jìn)行求解即可求得答案;
(4)畫樹狀圖得到所有等可能的情況數(shù),找出符合條件的情況數(shù),然后利用概率公式進(jìn)行求解即可.
(1)m=40×0.2=8,n=14÷40=0.35,
故答案為:8,0.35;
(2)補(bǔ)全圖形如下:
(3)由于40個(gè)數(shù)據(jù)的中位數(shù)是第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在89.5~94.5,
∴推測他的成績落在分?jǐn)?shù)段89.5~94.5內(nèi),
故答案為:89.5~94.5;
(4)選手有4人,2名是男生,2名是女生,畫樹狀圖如下:
共有12種等可能的結(jié)果,其中一名男生一名女生的結(jié)果數(shù)有8種,
所以恰好是一名男生和一名女生的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球;B乒乓球;C羽毛球;D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有__________人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(1)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,∠CAB=30°,以AB的中點(diǎn)為圓心,OA的長為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港口 A、B、C 依次在同一條直線上,甲、乙兩艘船同時(shí)分別從 A、B兩港出發(fā),勻速駛向 C 港,甲、乙兩船與 B 港的距離 y(海里)與行駛時(shí)間 x 時(shí))之間的函數(shù)關(guān)系如圖所示,則下列說法錯(cuò)誤的是( )
A.甲船平均速度為 60 海里/時(shí)B.乙船平均速度為 30 海里/時(shí)
C.甲、乙兩船在途中相遇兩次D.A、C 兩港之間的距離為 120 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y ax2 - 2ax 3a交 x 軸正半軸于點(diǎn) A,負(fù)半軸于點(diǎn) B,交 y 軸于點(diǎn)C,tan∠OBC=3.
(1)求 a 值;
(2)點(diǎn) P 為第一象限拋物線上一點(diǎn),連接 AC、PA、PC,若點(diǎn) P 的橫坐標(biāo)為 t, PAC 的面積為S,求 S與t的函數(shù)解析式,(請(qǐng)直接寫出自變量 t 的取值范圍);
(3)在(2)的條件下,過點(diǎn) P 作 PD∥y 軸交 CA 延長線于點(diǎn) D,連接 PB,交 y 軸于點(diǎn) E,點(diǎn) Q 為第二象限拋物線上一點(diǎn),連接 QE 并延長分別交 x 軸、拋物線于點(diǎn) N、F,連接 FD,交 x 軸于點(diǎn) K ,當(dāng)E 為 QF 的中點(diǎn)且 FN=FK 時(shí),求直線 DF 的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,已知∠ACB=90°,AC=BC=4,若點(diǎn)E在△ABC內(nèi)部運(yùn)動(dòng),且滿足AE2=BE2+2CE2,則點(diǎn)E的運(yùn)動(dòng)路徑長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了促進(jìn)旅游業(yè)的發(fā)展,要在如圖所示的三條公路,,圍成的一塊地上修建一個(gè)度假村,要使這個(gè)度假村到,兩條公路的距離相等,且到,兩地的距離相等,下列選址方法繪圖描述正確的是( )
A.畫的平分線,再畫線段的垂直平分線,兩線的交點(diǎn)符合選址條件
B.先畫和的平分線,再畫線段的垂直平分線,三線的交點(diǎn)符合選址條件
C.畫三個(gè)角,和三個(gè)角的平分線,交點(diǎn)即為所求
D.畫,,三條線段的垂直平分線,交點(diǎn)即為所求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,是邊上的一點(diǎn)(不與點(diǎn)重合),邊上點(diǎn)在點(diǎn)的右邊且,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接.
(1)如圖1,
①依題意補(bǔ)全圖1;
②求證:;
(2)如圖2,,用等式表示線段,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com