【題目】港在地的正南千米處,一艘輪船由港開出向西航行,某人第一次在處望見該船在南偏西,半小時后,又望見該船在南偏西,則該船速度為________千米/小時.
【答案】
【解析】
根據(jù)題意畫出圖形,在圖中兩個直角三角形中,利用AB的長以及兩個已知角的正切函數(shù),分別求出AD和AC,CD即可求出,最后除以行駛時間即可.
解:如圖,AB=10千米,∠ABC=30°,∠ABD=60°,從C到D用時半小時即0.5小時,
∵在Rt△ABD中,∠ABD=60°,
∴tan∠ABD=tan60°=
∴AD=ABtan60°=10×=30.
在Rt△ABC中,∠ABC=30°,
∴tan∠ABC=tan30°=,
∴AC=ABtan30°=10×=10.
∴CD=AD-AC=20,
∵從C到D用時0.5小時,
∴該船的速度為20÷0.5=40千米/小時.
故答案為:40.
科目:初中數(shù)學 來源: 題型:
【題目】已知k為任意實數(shù),隨著k的變化,拋物線y=x2﹣2(k﹣1)x+k2﹣5的頂點隨之運動,則頂點運動時經(jīng)過的路徑與兩條坐標軸圍成圖形的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設計一種砌法,使矩形花園的面積為300m2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應點為P,則線段AP的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直線y=x﹣3與x軸、y軸分別交于點A、B,拋物線y=x2+bx+c經(jīng)過點A、B,且交x軸于點C.
(1)求拋物線的解析式;
(2)點P為拋物線上一點,且點P在AB的下方,設點P的橫坐標為m.
①試求當m為何值時,△PAB的面積最大;
②當△PAB的面積最大時,過點P作x軸的垂線PD,垂足為點D,問在直線PD上否存在點Q,使△QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于霧霾天氣趨于嚴重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式及售價x的取值范圍;
售價(元/臺) | 月銷售量(臺) |
400 | 200 |
250 | |
x |
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.
(1)從中隨機抽出一張牌,牌面數(shù)字是偶數(shù)的概率是 ;
(2)從中隨機抽出二張牌,兩張牌牌面數(shù)字的和是5的概率是 ;
(3)先從中隨機抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com