【題目】(2016山東濰坊第24題)如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于3時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
【答案】(1)詳見解析;(2)將△EDF以點(diǎn)D為旋轉(zhuǎn)中心,順時(shí)針或逆時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積等于3.
【解析】
試題分析:(1)連接BD,易證△ABD為等邊三角形,由等腰三角形的三線合一得到AE=EB,根據(jù)相似三角形的性質(zhì)解答即可;(2)分∠EDF順時(shí)針旋轉(zhuǎn)和逆時(shí)針旋轉(zhuǎn)兩種情況,根據(jù)旋轉(zhuǎn)變換的性質(zhì)解答即可.
試題解析:(1)證明:如圖1,連接BD,交AC于O,
在菱形ABCD中,∠BAD=60°,AD=AB,
∴△ABD為等邊三角形,
∵DE⊥AB,
∴AE=EB,
∵AB∥DC,
∴=,
同理, =,
∴MN=AC;
(2)解:∵AB∥DC,∠BAD=60°,
∴∠ADC=120°,又∠ADE=∠CDF=30°,
∴∠EDF=60°,
當(dāng)∠EDF順時(shí)針旋轉(zhuǎn)時(shí),
由旋轉(zhuǎn)的性質(zhì)可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,
DE=DF=,∠DEG=∠DFP=90°,
在△DEG和△DFP中,
,
∴△DEG≌△DFP,
∴DG=DP,
∴△DGP為等邊三角形,
∴△DGP的面積=DG2=3,
解得,DG=2,
則cos∠EDG==,
∴∠EDG=60°,
∴當(dāng)順時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積等于3,
同理可得,當(dāng)逆時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積也等于3,
綜上所述,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心,順時(shí)針或逆時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積等于3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,成書大約在四、五世紀(jì).書中有這樣一道題,原文如下:
“今有三人共車,二車空;二人共車,九人步.問人與車各幾何.”
大意為:現(xiàn)有若干人和若干輛車,若3人坐一輛車,則有2輛車是空的;若2人坐一輛車,則有9人步行.問有多少人和多少輛車.
請(qǐng)解答上述問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是 .
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的價(jià)格標(biāo)簽已丟失,售貨員只知道“它的進(jìn)價(jià)為90元,打七折出售后,仍可獲利5%”,你認(rèn)為售貨員應(yīng)標(biāo)在標(biāo)簽上的價(jià)格為元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com