【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BADBC于點(diǎn)E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.

【答案】9

【解析】

ABCD中,∠ADC=60°,易得ABE是等邊三角形,又由BC=6,得到∠BCA=30°,BAC=90°,最后根據(jù)SABCD=ABAC進(jìn)行計(jì)算即可.

:∵四邊形ABCD是平行四邊形,

∴∠ABC=ADC=60°,BAD=120°,

AE平分∠BAD,

∴∠BAE=EAD=60°

∴△ABE是等邊三角形,

AE=AB=BE=3,

BC=6,

CE=3=AE,

∵∠AEB=60°,

∴∠BCA=30°,

∴∠BAC=90°,

RtABC中,AC==3

SABCD=ABAC=3×3 =9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,E,DAE上的一點(diǎn),且,連接BD,CD

試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;

如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.

試猜想BDAC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;

你能求出BDAC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么DAC的度數(shù)為( 。

A. 90° B. 80° C. 70° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)某賓館準(zhǔn)備購(gòu)進(jìn)一批換氣扇,從電器商場(chǎng)了解到:一臺(tái)A型換氣扇和三臺(tái)B型換氣扇共需275元;三臺(tái)A型換氣扇和二臺(tái)B型換氣扇共需300元.

(1)求一臺(tái)A型換氣扇和一臺(tái)B型換氣扇的售價(jià)各是多少元;

(2)若該賓館準(zhǔn)備同時(shí)購(gòu)進(jìn)這兩種型號(hào)的換氣扇共40臺(tái)并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)O是邊AB、AC垂直平分線的交點(diǎn),點(diǎn)E是∠ABC、∠ACB角平分線的交點(diǎn),若∠O+E180°,則∠A_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)CE,FB在同一直線上,點(diǎn)ADBC異側(cè),ABCD,AEDF,AD

1)求證:AB=CD;

2)若ABCF,B40°,求D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為S,作△ABC邊中線AC1,取AB的中點(diǎn)A1,連接A1C1得到第一個(gè)三角形△A1BC1,作△A1BC1中線A1C2,取A1B的中點(diǎn)A2,連接A1C2得到第二個(gè)三角形△A2BC2………,重復(fù)這樣的操作,則第2019個(gè)三角形△A2019BC2019的面積是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一款名為超級(jí)瑪麗的游戲中,瑪麗到達(dá)一個(gè)高為10米的高臺(tái)A,利用旗桿頂部的繩索,劃過90°到達(dá)與高臺(tái)A水平距離為17米,高為3米的矮臺(tái)B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點(diǎn)的高度MN.

查看答案和解析>>

同步練習(xí)冊(cè)答案