【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標(biāo)為 ,點C的坐標(biāo)為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值為( )

A.
B.
C.2
D.

【答案】B
【解析】解:作A關(guān)于OB的對稱點D,連接CD交OB于P,連接AP,則此時PA+PC的值最小,
∵DP=PA,
∴PA+PC=PD+PC=CD,
∵B
∴AB= ,OA= ,
∵∠OAB=90°,
∴∠B=∠AOB=45°,
由勾股定理得:OB=AD=2,
∵C(1,0),
∴CD=
即PA+PC的最小值是
故選B.

作A關(guān)于OB的對稱點D,連接CD交OB于P,連接AP,則此時PA+PC的值最小,根據(jù)勾股定理求出CD,即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B=40°,C=80°,ADBC邊上的高,AE平分∠BAC.

(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A4紙復(fù)印文件,在甲復(fù)印店不管一次復(fù)印多少頁,每頁收費(fèi)0.1元.在乙復(fù)印店復(fù)印同樣的文件,一次復(fù)印頁數(shù)不超過20時,每頁收費(fèi)0.12元;一次復(fù)印頁數(shù)超過20時,超過部分每頁收費(fèi)0.09元.

設(shè)在同一家復(fù)印店一次復(fù)印文件的頁數(shù)為x(x為非負(fù)整數(shù))

(1)根據(jù)題意,填寫下表:

一次復(fù)印頁數(shù)()

5

10

20

30

甲復(fù)印店收費(fèi)()

0.5

   

2

   

乙復(fù)印店收費(fèi)()

0.6

   

2.4

   

(2)設(shè)在甲復(fù)印店復(fù)印收費(fèi)y1元,在乙復(fù)印店復(fù)印收費(fèi)y2元,分別寫出y1y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)x70時,顧客在哪家復(fù)印店復(fù)印花費(fèi)少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為參加學(xué)校的大課間活動比賽,準(zhǔn)備購進(jìn)一批跳繩,已知2根A型跳繩和1根B型跳繩共需56元,1根A型跳繩和2根B型跳繩共需82元.
(1)求一根A型跳繩和一根B型跳繩的售價各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的跳繩共50根,并且A型跳繩的數(shù)量不多于B型跳繩數(shù)量的3倍,請設(shè)計書最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D為碼頭,A,B兩個燈塔與碼頭的距離相等,DA,DB為海岸線,一輪船離開碼頭,計劃沿∠ADB的平分線航行,在航行途中C點處,測得輪船與燈塔A和燈塔B的距離相等.試問:輪船航行是否偏離指定航線?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)解不等式組
(2)解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與y軸相交于點A,與反比例函數(shù)y2= (c≠0)的圖象相交于點B(3,2)、C(﹣1,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出y1>y2時x的取值范圍;
(3)在y軸上是否存在點P,使△PAB為直角三角形?如果存在,請求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點P為BC的中點,連接EP,AD.

(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2x+a﹣2=0.
(1)若該方程有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍;
(2)當(dāng)該方程的一個根為1時,求a的值及方程的另一根.

查看答案和解析>>

同步練習(xí)冊答案