【題目】如圖,,平分,為上一點(diǎn),交于點(diǎn),于, ,則_____.
【答案】
【解析】
過P作PF⊥OB于F,根據(jù)角平分線的定義可得∠AOC=∠BOC=15°,根據(jù)平行線的性質(zhì)可得∠DPO=∠AOP,從而可得PD=OD,再根據(jù)30度所對(duì)的邊是斜邊的一半可求得PF的長(zhǎng),最后根據(jù)角平分線的性質(zhì)即可求得PE的長(zhǎng).
解:過P作PF⊥OB于F,
∵∠AOB=30°,OC平分∠AOB,
∴∠AOC=∠BOC=15°,
又∵PD∥OA,
∴∠DPO=∠AOP=15°,
∴PD=OD=4cm,
∵∠AOB=30°,PD∥OA,
∴∠BDP=30°,
∴在Rt△PDF中,PF=PD=2cm,
∵OC為角平分線且PE⊥OA,PF⊥OB,
∴PE=PF,
∴PE=PF=2cm.
故答案為:2cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某倉(cāng)儲(chǔ)中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4 m,B,C在同一水平面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長(zhǎng)方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5 m時(shí),求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC 中,AB、AC 邊的垂直平分線相交于點(diǎn) O,分別交 BC 邊于點(diǎn) M、N,連接 AM,AN.
(1)若△AMN 的周長(zhǎng)為 6,求 BC 的長(zhǎng);
(2)若∠MON=30°,求∠MAN 的度數(shù);
(3)若∠MON=45°,BM=3,BC=12,求 MN 的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BCE≌△DCF;
(2)求CF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)圖象過點(diǎn),頂點(diǎn)為,則結(jié)論:①;②時(shí),函數(shù)的最大值是;③;④;⑤.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)F,點(diǎn)點(diǎn)F作DE∥BC,交AB于點(diǎn)D,交AC于點(diǎn)E。若BD=3,DE=5,則線段EC的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com