精英家教網(wǎng)如圖,點(diǎn)P是矩形ABCD內(nèi)一點(diǎn),已知△PBC的面積為5,△PCD的面積為2,求△PAC的面積.
分析:首先證明出S△APD+S△BPC=S△ABP+S△CPD=
1
2
S矩形ABCD,然后得到S△PAB=
1
2
S矩形ABCD-S△PCD=
1
2
S矩形ABCD-2,最后得到S△PAC=S△ABP+S△BPC-S△ABC=S△ABP+S△BPC-
1
2
S矩形ABCD,于是即可求出△PAC的面積.
解答:解:∵S△APD+S△BPC=
1
2
S矩形ABCD,
S△ABP+S△CPD=
1
2
S矩形ABCD,
∴S△APD+S△BPC=S△ABP+S△CPD=
1
2
S矩形ABCD,
∴S△PAB=
1
2
S矩形ABCD-S△PCD=
1
2
S矩形ABCD-2,
∴S△PAC=S△ABP+S△BPC-S△ABC=S△ABP+S△BPC-
1
2
S矩形ABCD
=
1
2
S矩形ABCD-2+5-
1
2
S矩形ABCD
=3.
故△PAC的面積為3.
點(diǎn)評(píng):本題主要考查矩形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是用S△PAC=S△ABP+S△BPC-S△ABC=S△ABP+S△BPC-
1
2
S矩形ABCD,此題有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)E是矩形ABCD的對(duì)角線(xiàn)BD上的一點(diǎn),且BE=BC,AB=3,BC=4,點(diǎn)P為直線(xiàn)EC上的一點(diǎn),且PQ⊥BC于點(diǎn)Q,PR⊥BD于點(diǎn)R.
(1)如圖1,當(dāng)點(diǎn)P為線(xiàn)段EC中點(diǎn)時(shí),易證:PR+PQ=
125
(不需證明).
(2)如圖2,當(dāng)點(diǎn)P為線(xiàn)段EC上的任意一點(diǎn)(不與點(diǎn)E、點(diǎn)C重合)時(shí),其它條件不變,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
(3)如圖3,當(dāng)點(diǎn)P為線(xiàn)段EC延長(zhǎng)線(xiàn)上的任意一點(diǎn)時(shí),其它條件不變,則PR與PQ之間又具有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,點(diǎn)E是矩形ABCD中BC邊的中點(diǎn),AB=6,當(dāng)AE⊥DE時(shí),矩形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合.若BC=3,則折痕CE的長(zhǎng)為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶應(yīng)縣一模)如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合,若BC=3,求折痕CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是矩形ABCD對(duì)角線(xiàn)BD上的一個(gè)動(dòng)點(diǎn),AB=6,AD=8,則PA+PC的最小值為
10
10

查看答案和解析>>

同步練習(xí)冊(cè)答案