【題目】分解因式:2mx﹣6my= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次“愛(ài)心互助”捐款活動(dòng)中,某班第一小組8名同學(xué)捐款的金額(單位:元)如下
表所示:
金額/元 | 5 | 6 | 7 | 10 |
人數(shù) | 2 | 3 | 2 | 1 |
這8名同學(xué)捐款的平均金額為
A.3.5元 B.6元 C.6.5元 D.7元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形(提示:正方形四邊相等,四個(gè)角都是90°)
(1)如圖1,點(diǎn)G是BC邊上任意一點(diǎn)(不與點(diǎn)B、C重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.
求證:△ABF≌△DAE;
(2)直接寫(xiě)出(1)中,線段EF與AF、BF的等量關(guān)系 ;
(3)①如圖2,若點(diǎn)G是CD邊上任意一點(diǎn)(不與點(diǎn)C、D重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,則圖中全等三角形是 ,線段EF與AF、BF的等量關(guān)系是 ;
②如圖3,若點(diǎn)G是CD延長(zhǎng)線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,線段EF與AF、BF的等量關(guān)系是 ;
(4)若點(diǎn)G是BC延長(zhǎng)線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,請(qǐng)畫(huà)圖、探究線段EF與AF、BF的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ΔABC內(nèi)接于⊙O,D是⊙O上一點(diǎn),連結(jié)BD、CD,AC、BD交于點(diǎn)E.
(1)請(qǐng)找出圖中的相似三角形,并加以證明(不添加其他線條的情況下);
(2)若∠D=45°,BC=4,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象交x軸于點(diǎn)A(﹣4,0)和點(diǎn)B,交y軸于點(diǎn)C(0,4).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使得的值最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在平面直角坐標(biāo)系內(nèi),是否存在點(diǎn)Q,使A,B,C,Q四點(diǎn)構(gòu)成平行四邊形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+n(k≠0)與二次函數(shù)y2=ax2+bx+c(a≠0)的圖象相交于A(﹣1,5)、B(9,2)兩點(diǎn),則關(guān)于x的不等式kx+n≥ax2+bx+c的解集為( 。
A. ﹣1≤x≤9 B. ﹣1≤x<9 C. ﹣1<x≤9 D. x≤﹣1或x≥9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.
(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長(zhǎng)線上時(shí),且滿(mǎn)足BE=DF,上述結(jié)論仍然成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com