閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1,配方得y=(x-m)2+2m-1,∴拋物線頂點(diǎn)坐標(biāo)為(m,2m-1).即 
x=m
y=2m-1
,當(dāng)m的值變化時(shí),x,y的值也隨之變化,因而y的值也隨x值的變化而變化.將(1)代(2),得y=2x-1.可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式:y=2x-1;根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式.
分析:把拋物線解析式配方成頂點(diǎn)式解析式,再寫出頂點(diǎn)坐標(biāo),然后消掉m整理即可得解.
解答:解:由y=x2-2mx+2m2-3m+1,
配方得y=(x-m)2+m2-3m+1,
∴拋物線頂點(diǎn)坐標(biāo)為(m,m2-3m+1),
x=m①
y=m2-3m+1②
,
當(dāng)m的值變化時(shí),x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將①代入②,得y=x2-3x+1,
因此,拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式為:y=x2-3x+1.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),配方法的應(yīng)用,讀懂題目信息,理解頂點(diǎn)所在直線的求解方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實(shí)數(shù)時(shí),拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是
 
,其中運(yùn)用的公式是
 
.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是
 

②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1,配方得y=(x-m)2+2m-1,∴拋物線頂點(diǎn)坐標(biāo)為(m,2m-1).即 數(shù)學(xué)公式,當(dāng)m的值變化時(shí),x,y的值也隨之變化,因而y的值也隨x值的變化而變化.將(1)代(2),得y=2x-1.可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式:y=2x-1;根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期中題 題型:解答題

閱讀材料:
當(dāng)拋物線的關(guān)系式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化。
例如:由拋物線y=x2-2mx+m2+2m-1,①
有y=(x-m)2+2m-1②
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),即
當(dāng)m的值變化時(shí),x、y的值也隨之變化,因而y值也隨x值的變化而變化,將③代入④,得y=2x-1⑤,可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式y(tǒng)=2x-1,
解答問題:
(1)在上述過程中,由①到②所用的數(shù)學(xué)方法是____,其中運(yùn)用了____公式;由③④得到⑤所用的數(shù)學(xué)方法是____;
(2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式____。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省淮北市五校第五次聯(lián)考九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x,y),則:
當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x,y的值也隨之變化,將(3)代入(4)
得:y=2x-1.…(5)
可見,不論m取任何實(shí)數(shù)時(shí),拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是______,其中運(yùn)用的公式是______.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是______.
②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

同步練習(xí)冊(cè)答案