拋物線y=x2+bx+c過(guò)點(diǎn)(2,-2)和(-1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式.
(2)求△ABC的面積.
(1)將點(diǎn)(2,-2)和(-1,10),代入y=x2+bx+c得:
-2=22+2b+c
10=1-b+c

解得:
b=-5
c=4
,
∴拋物線的解析式為:y=x2-5x+4;

(2)當(dāng)y=0,則x2-5x+4=0,
解得:x1=1,x2=4,
∴AB=4-1=3,
當(dāng)x=0,則y=4,
∴CO=4,
∴△ABC的面積為:
1
2
×3×4=6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線l經(jīng)過(guò)A(3,0),B(0,3)兩點(diǎn),且與二次函數(shù)y=x2+1的圖象,在第一象限內(nèi)相交于點(diǎn)C.求:
(1)△AOC的面積;
(2)二次函數(shù)圖象的頂點(diǎn)與點(diǎn)A、B組成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與y軸交于點(diǎn)C,點(diǎn)D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)E,使B、D、E、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2
的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2,A3…An在y軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An-1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An-1BnAn=60°,菱形An-1BnAnCn的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ為正方形?若存在,求點(diǎn)P、Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y1=x2+(m+1)x+m-4與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且對(duì)稱軸為x=-1.
(1)求m的值;
(2)畫(huà)出這條拋物線;
(2)若直線y2=kx+b過(guò)點(diǎn)B且與拋物線交于點(diǎn)P(-2m,-3m),根據(jù)圖象回答:當(dāng)x取什么值時(shí),y1≥y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點(diǎn)在線段AB上運(yùn)動(dòng)(拋物線隨頂點(diǎn)一起平移),與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為-3,則點(diǎn)D的橫坐標(biāo)最大值為(  )
A.-3B.1C.5D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過(guò)程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

附加題:如圖1,菱形紙片ABCD中,AB=1,∠B=60°,將紙片翻折(如圖2),使D點(diǎn)落在AD所在直線上,并可在直線AD上運(yùn)動(dòng),折痕為EF.當(dāng)
1
2
<DE<1時(shí),設(shè)AB與DC相交于點(diǎn)G(如圖).
(1)線段AD與DG相等嗎?△ADG與△BCG的面積之和是否隨著DE的變化而變化?為什么?
(2)設(shè)AD=x,重疊部分(圖3中陰影部分)的面積為y,求出y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍以及面積y的取值范圍.?

查看答案和解析>>

同步練習(xí)冊(cè)答案