如圖,正方形ABCD的邊長為4,點E是CD邊上一點,CE=1,點F是BC的中點,求證:AF⊥EF.

【答案】分析:由正方形的四條邊相等得到AB=BC=4,再由F為BC中點,求出BF=FC=2,且四個角為直角,進(jìn)而確定出兩邊對應(yīng)成比例且夾角相等,得到三角形ABF與三角形ECF相似,由相似三角形的對應(yīng)角相等得到一對角相等,再由同角的余角相等及垂直的定義即可得證.
解答:證明:∵正方形ABCD的邊長為4,CE=1,點F是BC的中點,
∴AB=BC=4,BF=FC=BC=2,∠B=∠C=90°
∴在Rt△ABF和Rt△FCE中,
==2,且∠B=∠C=90°,
∴△ABF∽FCE,
∴∠AFB=∠FEC,
∵∠EFC+∠FEC=90°,
∴∠EFC+∠AFB=90°,
則∠AFE-180°-(∠EFC+∠AFB)=90°,即AF⊥EF.
點評:此題考查了相似三角形的判定與性質(zhì),以及正方形的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案