【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(點A在點B的左側),點A的坐標為(﹣1,0),與y軸交于點C(0,3),作直線BC.動點P在x軸上運動,過點P作PM⊥x軸,交拋物線于點M,交直線BC于點N,設點P的橫坐標為m.
(Ⅰ)求拋物線的解析式和直線BC的解析式;
(Ⅱ)當點P在線段OB上運動時,求線段MN的最大值;
(Ⅲ)當以C、O、M、N為頂點的四邊形是平行四邊形時,直接寫出m的值.

【答案】解:(Ⅰ)∵拋物線過A、C兩點,

∴代入拋物線解析式可得: ,解得: ,

∴拋物線解析式為y=﹣x2+2x+3,

令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,

∵B點在A點右側,

∴B點坐標為(3,0),

設直線BC解析式為y=kx+s,

把B、C坐標代入可得 ,解得 ,

∴直線BC解析式為y=﹣x+3;

(Ⅱ)∵PM⊥x軸,點P的橫坐標為m,

∴M(m,﹣m2+2m+3),N(m,﹣m+3),

∵P在線段OB上運動,

∴M點在N點上方,

∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣ 2+

∴當m= 時,MN有最大值,MN的最大值為 ;

(Ⅲ)∵PM⊥x軸,

∴MN∥OC,

當以C、O、M、N為頂點的四邊形是平行四邊形時,則有OC=MN,

當點P在線段OB上時,則有MN=﹣m2+3m,

∴﹣m2+3m=3,此方程無實數(shù)根,

當點P不在線段OB上時,則有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,

∴m2﹣3m=3,解得m= 或m= ,

綜上可知當以C、O、M、N為頂點的四邊形是平行四邊形時,m的值為


【解析】(1)把A、C兩點的坐標代入拋物線的解析式中列方程組可求得b,c的值,令y=0,解方程可得B點的坐標,利用待定系數(shù)法求直線BC的解析式;(2)根據(jù)解析式表示出M、N兩點的坐標,其縱坐標的差就是MN的長,配方后求得最值即可;(3)分兩種情況:當點P在線段OB上時,則有MN=﹣m2+3m,當點P不在線段OB上時,則有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,根據(jù)MN=3列方程解出即可。
【考點精析】本題主要考查了確定一次函數(shù)的表達式和二次函數(shù)的最值的相關知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,F(xiàn)是BC上的一點,直線DF與AB的延長線相交于點E,BP∥DF,且與AD相交于點P,則圖中相似三角形的組數(shù)為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,把矩形繞點旋轉,得到矩形,且點落在上,連接,,于點,連接,若平分,則下列結論:

;

;

;

,其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:

1的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、、分別是、的對應點,試畫出

2)連接,則線段 的位置關系為____,線段的數(shù)量關系為___;

3)平移過程中,線段掃過部分的面積_____.(平方單位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為D、E,BE、CD相交于點O.如果ABAC,那么圖中全等的直角三角形的對數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知ABC中, BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側, BDAE于D, CEAE于E.

(1)求證: BD=DE+CE.

(2)若直線AE繞A點旋轉到圖位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關系如何? 請給予證明;

(3)若直線AE繞A點旋轉到圖位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關系如何? 請直接寫出結果, 不需證明.

(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE,CE的數(shù)量關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y= (x>0)上的一個動點,連接OA,過點O作OB⊥OA,并且使OB=2OA,連接AB,當點A在反比函數(shù)圖象上移動時,點B也在某一反比例函數(shù)圖象y= 上移動,k的值為( )

A.2
B.﹣2
C.4
D.﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商店促銷,設了有兩種搖獎方式:

方式一:如圖1,有一枚均勻的正二十面體形狀的骰子,其中的1個面標有“1”,2個面標有“2”3個面標有“3”,4個面標有“4”,5個面標有“5”,其余的面標有“6”.將這個骰子擲出后,“6”朝上的則獲獎:

1 2

方式二:如圖2,一個均勻的轉盤被等分成12份,分別標有1,2,34,56,78,9,1011,1212個數(shù)字.轉動轉盤,當轉盤停止后,指針指向的數(shù)字為3的倍數(shù)則獲獎.

小明想增加獲獎機會,應選擇哪種搖獎方式?請通過計算,應用概率相關知識說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).
(1)將△ABC繞點B順時針旋轉90°得到△A′BC′,請畫出△A′BC′.
(2)求BA邊旋轉到BA′位置時所掃過圖形的面積.

查看答案和解析>>

同步練習冊答案