【題目】如圖,在中,,以為直徑的交于點(diǎn),交于點(diǎn),點(diǎn)是的延長(zhǎng)線上一點(diǎn),且∠PDB=∠A,連接,.
(1)求證:是的切線.
(2)填空:
①當(dāng)的度數(shù)為______時(shí),四邊形是菱形;
②當(dāng)時(shí),的面積為_________.
【答案】(1)證明見解析;(2)①30°;②
【解析】
(1)要證明切線,按照?qǐng)A周角定理和已知的2倍角關(guān)系,證明∠ODP為直角
(2)當(dāng)四邊形OBDE為菱形時(shí),△OBD為等邊三角形,則∠P為30°
(3)連接AD,過點(diǎn)E作BC的垂線,通過平行相似得到a、b的第一種關(guān)系,根據(jù)勾股定理得到a、b的第二種關(guān)系,用a、b表示出△CDE的面積,再代入a與b的關(guān)系,獲得面積值.
(1)如圖,連接OD
∵OB=OD,∠PDB=∠A
∴∠ODB=∠ABD=90°﹣∠A=90°﹣∠PDB
∴∠ODB+∠PDB=90°
∴∠ODP=90°
又∵OD是⊙O的半徑
∴PD是⊙O的切線
(2)①30°
若四邊形OBDE為菱形,則OB=BD=DE=EO=OD
∴△OBD為等邊三角形
∴∠ABD=∠A=60°
∴∠PDB=30°
∴∠P=30°
即當(dāng)∠P為30°時(shí),四邊形OBDE為菱形
②
如圖所示
∵AO=OE=2,∠AOE=90°
∴AE=
∴EC=4﹣
∵∠BAC=45°
∴∠EDB=135°
∴∠EDC=45°
設(shè)DF=EF=b,FC=a
∵△EFC∽△ADC
∴
∴
∵a2+b2=(4﹣)2
解得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形紙片ABCD折疊,使得點(diǎn)A落在邊CD上的E點(diǎn),折痕為FG.若BG=2cm,DE=3cm,則FG的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請(qǐng)你只用無刻度的直尺在網(wǎng)格中找到一點(diǎn)D,使四邊形ABCD是以AC為“相似對(duì)角線”的四邊形(保留畫圖痕跡,找出3個(gè)即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對(duì)角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對(duì)角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對(duì)角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣3過點(diǎn)A(1,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)P是線段AD上的動(dòng)點(diǎn).
(1)b= ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)求直線AD的解析式;
(3)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,連接AQ,DQ,當(dāng)△ADQ的面積等于△ABD的面積的一半時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與一次函數(shù)交于第二、四象限的,兩點(diǎn),過點(diǎn)作軸于點(diǎn),,,點(diǎn)的坐標(biāo)為.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請(qǐng)根據(jù)圖象直接寫出的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山西省)我省某蘋果基地銷售優(yōu)質(zhì)蘋果,該基地對(duì)需要送貨且購(gòu)買量在2000kg﹣5000kg(含2000kg和5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):
方案A:每千克5.8元,由基地免費(fèi)送貨.
方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.
(1)請(qǐng)分別寫出按方案A,方案B購(gòu)買這種蘋果的應(yīng)付款y(元)與購(gòu)買量x(kg)之間的函數(shù)表達(dá)式;
(2)求購(gòu)買量x在什么范圍時(shí),選用方案A比方案B付款少;
(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購(gòu)買盡可能多的這種蘋果,請(qǐng)直接寫出他應(yīng)選擇哪種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(–1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移一個(gè)單位”為一次變換.如此這樣,連續(xù)經(jīng)過2018次變換后,正方形ABCD的對(duì)角線交點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對(duì)二次函數(shù)的圖象的描述,正確的是( 。
A. 經(jīng)過原點(diǎn)
B. 對(duì)稱軸是y軸
C. 開口向下
D. 在對(duì)稱右側(cè)部分是向下的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com