等邊三角形是大家熟悉的特殊三角形,除了以前我們所知道的它的一些性質(zhì)外,它還有很多其它的性質(zhì),我們來研究下面的問題:

如圖1,點(diǎn)P是等邊△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易證:BE+CF+AD=EC+AF+BD
問題提出:如圖2,若點(diǎn)P是等邊△ABC內(nèi)任意一點(diǎn),PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?
為了解決這個(gè)問題,現(xiàn)給予證明過程:
證明:連接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可證:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
將上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等邊三角形,設(shè)邊長(zhǎng)為a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
問題拓展:如圖3,若點(diǎn)P是等邊△ABC的邊上任意一點(diǎn),PD⊥AB于D,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請(qǐng)直接寫出結(jié)論,不用證明;若不成立,請(qǐng)說明理由.
問題解決:
如圖4,若點(diǎn)P是等邊△ABC外任意一點(diǎn),PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.

解:?jiǎn)栴}拓展:BE+CF+AD=EC+AF+BD仍然成立.
理由如下:如圖3,連接PA,在Rt△PAD和Rt△PBD中,PA2=AD2+PD2,PB2=BD2+PD2,
∴PA2-PB2=AD2-BD2,
同理可證:PC2-PA2=CF2-AF2,
又∵PB2=BE2,PC2=CE2,
∴PB2-PC2=BE2-CE2
將上述三式相加得:AD2-BD2+CF2-AF2+BE2-CE2=0,
即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0,
∵△ABC是等邊三角形,設(shè)邊長(zhǎng)為a,
∴BE+CE=CF+AF=AD+BD=a,
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0,
∴BE-CE+CF-AF+AD-BD=0,
∴BE+CF+AD=EC+AF+BD;

問題解決:如圖4,連接PA、PB、PC,
在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,
∴PB2-PC2=BE2-CE2,
同理可證:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2,
將上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,
即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0,
∵△ABC是等邊三角形,設(shè)邊長(zhǎng)為a,
∴BE+CE=CF+AF=AD+BD=a,
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0,
∴BE-CE+CF-AF+AD-BD=0,
∴BE+CF+AD=EC+AF+BD.
分析:?jiǎn)栴}拓展:連接PA,然后根據(jù)“問題提出”的證明思路證明即可;
問題解決:連接PA、PB、PC,然后根據(jù)“問題提出”的證明思路證明即可.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),勾股定理的應(yīng)用,讀懂題目信息,理解證明思路與方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•市南區(qū)模擬)等邊三角形是大家熟悉的特殊三角形,除了以前我們所知道的它的一些性質(zhì)外,它還有很多其它的性質(zhì),我們來研究下面的問題:

如圖1,點(diǎn)P是等邊△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易證:BE+CF+AD=EC+AF+BD
問題提出:如圖2,若點(diǎn)P是等邊△ABC內(nèi)任意一點(diǎn),PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?
為了解決這個(gè)問題,現(xiàn)給予證明過程:
證明:連接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可證:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
將上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等邊三角形,設(shè)邊長(zhǎng)為a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
問題拓展:如圖3,若點(diǎn)P是等邊△ABC的邊上任意一點(diǎn),PD⊥AB于D,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請(qǐng)直接寫出結(jié)論,不用證明;若不成立,請(qǐng)說明理由.
問題解決:
如圖4,若點(diǎn)P是等邊△ABC外任意一點(diǎn),PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省青島市市南區(qū)中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

等邊三角形是大家熟悉的特殊三角形,除了以前我們所知道的它的一些性質(zhì)外,它還有很多其它的性質(zhì),我們來研究下面的問題:

如圖1,點(diǎn)P是等邊△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易證:BE+CF+AD=EC+AF+BD
問題提出:如圖2,若點(diǎn)P是等邊△ABC內(nèi)任意一點(diǎn),PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?
為了解決這個(gè)問題,現(xiàn)給予證明過程:
證明:連接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可證:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
將上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等邊三角形,設(shè)邊長(zhǎng)為a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
問題拓展:如圖3,若點(diǎn)P是等邊△ABC的邊上任意一點(diǎn),PD⊥AB于D,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請(qǐng)直接寫出結(jié)論,不用證明;若不成立,請(qǐng)說明理由.
問題解決:
如圖4,若點(diǎn)P是等邊△ABC外任意一點(diǎn),PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案