【題目】如圖,六邊形ABCDEF的六個(gè)角都是120°,邊長(zhǎng)AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個(gè)六邊形的周長(zhǎng)是:__.
【答案】15cm
【解析】
凸六邊形ABCDEF,并不是一規(guī)則的六邊形,但六個(gè)角都是120°,所以通過適當(dāng)?shù)南蛲庾餮娱L(zhǎng)線,可得到等邊三角形,進(jìn)而求解.
解:如圖,分別作直線AB、CD、EF的延長(zhǎng)線和反向延長(zhǎng)線使它們交于點(diǎn)G、H、P.
∵六邊形ABCDEF的六個(gè)角都是120°,
∴六邊形ABCDEF的每一個(gè)外角的度數(shù)都是60°,
∴△APF、△BGC、△DHE、△GHP都是等邊三角形,
∴GC=BC=3cm,DH=DE=2cm,
∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm,
∴六邊形的周長(zhǎng)為1+3+3+2+4+2=15cm.
故答案為:15cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,對(duì)角線BD、CE交于點(diǎn)O,則線段AO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間每天的定價(jià)為180元時(shí),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用.
(1)若房?jī)r(jià)定為200元時(shí),求賓館每天的利潤(rùn);
(2)房?jī)r(jià)定為多少時(shí),賓館每天的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P為AC的中點(diǎn),Q從點(diǎn)A運(yùn)動(dòng)到B,點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止,連接PQ,取PQ的中點(diǎn)O,連接OC,OB.
(1)若△ABC∽△APQ,求BQ的長(zhǎng);
(2)在整個(gè)運(yùn)動(dòng)過程中,點(diǎn)O的運(yùn)動(dòng)路徑長(zhǎng)_____;
(3)以O為圓心,OQ長(zhǎng)為半徑作⊙O,當(dāng)⊙O與AB相切時(shí),求△COB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),可知△ABP∽△PCD.(不要求證明)
探究:如圖②,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:△ABP∽△PCD.
拓展:如圖③,在△ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn)D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)一定角度后,BC的對(duì)應(yīng)邊B′C交CD邊于點(diǎn)G,如果當(dāng)AB′=B′G時(shí)量得AD=7,CG=4,連接BB′、CC′,那么=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,將△ACB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AC′B′,則CB′的長(zhǎng)為( )
A. +B. 1+C. 3D. +
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y1=x2﹣2x﹣3先向左平移1個(gè)單位,再向上平移4個(gè)單位后,與拋物線y2=ax2+bx+c重合,現(xiàn)有一直線y3=2x+3與拋物線y2=ax2+bx+c相交.當(dāng)y2≤y3時(shí)自變量x的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com