【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)點(diǎn)C作AC∥BD交OB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
【答案】(1)證明見(jiàn)解析;(2)6πcm2.
【解析】試題分析:連接BC,OD,OC,設(shè)OC與BD交于點(diǎn)M.(1)求出∠COB的度數(shù),求出∠A的度數(shù),根據(jù)三角形的內(nèi)角和定理求出∠OCA的度數(shù),根據(jù)切線的判定推出即可;
(2)證明△CDM≌△OBM,從而得到S陰影=S扇形BOC.
試題解析:如圖,連接BC,OD,OC,設(shè)OC與BD交于點(diǎn)M.
(1)根據(jù)圓周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC為半徑,∴AC是⊙O的切線;
(2)由(1)知,AC為⊙O的切線,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂徑定理可知,MD=MB=BD=3.在Rt△OBM中,∠COB=60°,OB==6.
在△CDM與△OBM中,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM
∴陰影部分的面積S陰影=S扇形BOC==6π(cm2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為θ.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)θ=0°時(shí),= ;
②當(dāng)θ=180°時(shí),= .
(2)拓展探究
試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;
(3)問(wèn)題解決
①在旋轉(zhuǎn)過(guò)程中,BE的最大值為 ;
②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點(diǎn)共線時(shí),線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是規(guī)格為的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為,點(diǎn)的坐標(biāo)為;
(2)在第二象限內(nèi)的格點(diǎn)上找一點(diǎn),使點(diǎn)與線段組成一個(gè)以為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),畫(huà)出,則點(diǎn)的坐標(biāo)是 ,的周長(zhǎng)是 (結(jié)果保留根號(hào));
(3)作出關(guān)于軸對(duì)稱(chēng)的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知,平分外角,平分外角.直接寫(xiě)出和的數(shù)量關(guān)系,不必證明;
(2)如圖2,已知,和三等分外角,和三等分外角.試確定和的數(shù)量關(guān)系,并證明你的猜想;(不寫(xiě)證明依據(jù))
(3)如圖3,已知,、和四等分外角,、和四等分外角.試確定和的數(shù)量關(guān)系,并證明你的猜想;(不寫(xiě)證明依據(jù))
(4)如圖4,已知,將外角進(jìn)行分,是臨近邊的等分線,將外角進(jìn)行等分,是臨近邊的等分線,請(qǐng)直接寫(xiě)出和的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為響應(yīng)人民政府“形象重于生命”的號(hào)召,規(guī)劃部門(mén)在甲建筑物的頂部點(diǎn)測(cè)得條幅頂端的仰角為,測(cè)得條幅底端的俯角為,已知條幅長(zhǎng),則底部不能直接到達(dá)的甲、乙兩建筑物之間的水平距離的長(zhǎng)為________.(答案可帶根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠B=a,DE交AC于點(diǎn)E,下列結(jié)論:①AD2=AE.AB;②1.8≤AE<5;⑤當(dāng)AD=時(shí),△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國(guó)高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF=120°,小明和小慧對(duì)這個(gè)圖形展開(kāi)如下研究:
問(wèn)題初探:
(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時(shí),BE+CF=nAB,則n的值為______;
問(wèn)題再探:
(2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:
①DE始終等于DF;②BE與CF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.
成果運(yùn)用
(3)若邊長(zhǎng)AB=4,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,記四邊形DEAF的周長(zhǎng)為L,L=DE+EA+AF+FD,則周長(zhǎng)L的變化范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com