如圖,△ABC中,AC=BC,∠BAC的外角平分線交BC的延長線于點D,若∠ADC=數(shù)學公式∠CAD,則∠ABC=________度.

36
分析:設∠CDA=α,由∠ADC=∠CAD,根據(jù)角平分線定義得到∠CAD=∠DAE=2α,再根據(jù)三角形外角的性質得到∠B=2α-α=α,而AC=BC,得到∠BAC=∠B=α,然后根據(jù)三角形的內角和定理即可得到α.
解答:設∠CDA=α,
∵∠ADC=∠CAD,
∴∠CAD=2α,
而DA平分∠CAE,
∴∠CAD=∠DAE=2α,
而∠EAD=∠B+∠ADC,
∴∠B=2α-α=α,
又∵AC=BC,
∴∠BAC=∠B=α
在△ABD中,
∴∠B+∠CAB+∠CAD+∠ADC=180°,即α+α+2α+α=180°,
∴α=36°.
故答案為36.
點評:此題主要考查了學生的三角形的內角和定理:三角形的內角和為180°.也考查了角平分線定義以及三角形外角的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案