【題目】在眉山市開展城鄉(xiāng)綜合治理的活動中,需要將、、三地的垃圾50立方米、40立方米、50立方米全部運往垃圾處理場、兩地進(jìn)行處理.已知運往地的數(shù)量比運往地的數(shù)量的2倍少10立方米.
(1)求運往兩地的數(shù)量各是多少立方米?
(2)若地運往地立方米為整數(shù)),地運往地30立方米,地運往地的數(shù)量小于地運往地的2倍.其余全部運往地,且地運往地不超過12立方米,則、兩地運往、兩地哪幾種方案?
(3)已知從、、三地把垃圾運往、兩地處理所需費用如下表:
地 | 地 | 地 | |
運往地(元立方米) | 22 | 20 | 20 |
運往地(元立方米) | 20 | 22 | 21 |
在(2)的條件下,請說明哪種方案的總費用最少?
【答案】(1)共運往D地90立方米,運往E地50立方米;(2)見解析;(3)第一種方案的總費用最少.
【解析】
(1)設(shè)運往E地x立方米,由題意可列出關(guān)于x的方程,求出x的值即可;
(2)由題意列出關(guān)于a的一元一次不等式組,求出a的取值范圍,再根據(jù)a是整數(shù)可得出a的值,進(jìn)而可求出答案;
(3)根據(jù)(1)中的兩種方案求出其費用即可.
(1)設(shè)運往E地x立方米,由題意得,x+2x-10=140,
解得:x=50,
∴2x-10=90.
答:共運往D地90立方米,運往E地50立方米;
(2)由題意可得,
,
解得:20<a≤22,
∵a是整數(shù),
∴a=21或22,
∴有如下兩種方案:
第一種:A地運往D地21立方米,運往E地29立方米;
C地運往D地39立方米,運往E地11立方米;
第二種:A地運往D地22立方米,運往E地28立方米;
C地運往D地38立方米,運往E地12立方米;
(3)第一種方案共需費用:
22×21+20×29+30×20+22×10+39×20+11×21=2873(元),
第二種方案共需費用:
22×22+28×20+30×20+22×10+38×20+12×21=2876(元),
所以,第一種方案的總費用最少.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位,再向左平移1個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)作出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出C2點的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】莒南縣欲從某師范院校招聘一名“特崗教師”,對甲、乙、丙、丁四位候選人進(jìn)行了面試和筆試,他們的成績?nèi)绫恚?/span>
候選人 | 甲 | 乙 | 丙 | 丁 | |
測試成績 | 面試 | 86 | 91 | 90 | 83 |
筆試 | 90 | 83 | 83 | 92 |
根據(jù)錄用程序,作為人民教師面試的成績應(yīng)該比筆試的成績更重要,并分別賦予它們6和4的權(quán).根據(jù)四人各自的平均成績,你認(rèn)為將錄。 )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,有下列結(jié)論:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正確的結(jié)論有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由幾個相同的邊長為1的小立方塊搭成的幾何體的俯視圖如圖①,格中的數(shù)字表示該位置的小立方塊的個數(shù).
(1)請在下面方格紙圖②中分別畫出這個幾何體的主視圖和左視圖.
(2)根據(jù)三視圖,這個組合幾何體的表面積為多少個平方單位?(包括底面積)
(3)若上述小立方塊搭成的幾何體的俯視圖不變,如圖③,各位置的小立方塊個數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大(包括底面積)仿照圖①,將數(shù)字填寫在圖③的正方形中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠4,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC
∴∠2=∠3=90°
∴BD∥EF ( )
∴∠4=_____ ( )
∵∠1=∠4
∴∠1=_____
∴DG∥BC ( )
∴∠ADG=∠C( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)課外小組,在坐標(biāo)紙上為學(xué)校的一塊空地設(shè)計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,當(dāng)k≥2時,, ,[a]表示非負(fù)實數(shù)a的整數(shù)部分,例如[2.6]=2,[0.2]=0.按此方案,則第2018棵樹種植點的坐標(biāo)為( )
A.(3,2018)B.(2,2019)C.(2,403)D.(3,404)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD折疊,使頂點D落在AB邊上的點E處,折痕為AF,下列說法中不正確的是( )
A.EF∥BCB.EF=AEC.BE=CFD.AF=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E,C在線段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求證:△ABC≌△DEF;
(2)求證:四邊形ACFD為平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com