【題目】如圖,在△ABC中,AE是∠BAC的角平分線,交BC于點E,DE∥AB交AC于點D.
(1)求證AD=ED;
(2)若AC=AB,DE=3,求AC的長.
【答案】(1)證明見解析;(2)6.
【解析】
(1)由AE是∠BAC的角平分線可得∠DAE=∠BAE,由DE∥AB,可得∠DEA=∠EAB,則∠DEA=∠DAE,可得結(jié)論.
(2)根據(jù)等腰三角形三線合一可得AE⊥BC,可證∠C=∠CED則CD=DE,即可求AC的長.
證明:(1)∵AE是∠BAC的角平分線
∴∠DAE=∠BAE,
∵DE∥AB
∴∠DEA=∠EAB,
∴∠DAE=∠DEA,
∴AD=DE-;
(2)∵AB=AC,AE是∠BAC的角平分線
∴AE⊥BC
∴∠C+∠CAE=90°,∠CED+∠DEA=90°,
∵∠CAE=∠DEA,
∴∠C=∠CED-
∴DE=CD
∴AD=DE=CD=3
∴AC=6.
故答案為:(1)證明見解析;(2)6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,, 是的中點.點以每秒1個單位長度的速度從點出發(fā),沿向點運動;點同時以每秒3個單位長度的速度從 點出發(fā),沿向點運動.點停止運動時,點也隨之停止運動.當(dāng)運動時間秒時,以點為頂點的四邊形是平行四邊形.則的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點P表示的數(shù)是a,點P1表示的數(shù)是,我們稱“點P1是點P的相關(guān)點”,已知數(shù)軸上A1的相關(guān)點為A2,點A2的相關(guān)點為A3,點A3的相關(guān)點為A4,這樣依次得到點A1、A2、A3,A4,…,An若點A1在數(shù)軸表示的數(shù)是,則點A2109在數(shù)軸上表示的數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長AB=20 m,為加強水壩強度,將壩底從A處向后水平延伸到F處,使新的背水坡的坡角∠F=45°,求AF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過B(3,0)、C(0,3)兩點,
(1)求拋物線的函數(shù)關(guān)系式;
(2)直接寫出,當(dāng)y≥3時,x的取值范圍是_____;
(3)在拋物線的對稱軸上是否存在點M點,使△MOB是等腰三角形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是y與x的“反比例平移函數(shù)”.例如: 的圖象向左平移2個單位,再向下平移1個單位得到 的圖象,則是y與x的“反比例平移函數(shù)”.如圖,在平面直角坐標(biāo)系中,點O為原點,矩形OABC的頂點A、C的坐標(biāo)分別為(9,0)、(0,3).點D是OA的中點,連接OB、CD交于點E,“反比例平移函數(shù)”的圖象經(jīng)過B、E兩點.則這個“反比例平移函數(shù)”的表達式為____________;這個“反比例平移函數(shù)”的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,則寫出這個反比例函數(shù)的表達式為________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=5,CD=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了維護國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達處,此時測得燈塔在北偏東方向上.
(1)求的度數(shù);
(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知A、B兩個邊長不相等的正方形紙片并排放置,若m7,n3,試求A、B兩個正方形紙片的面積之和.
(2)如圖1,用m、n表示A、B兩個正方形紙片的面積之和為 .(請直接寫出答案)
(3)如圖2,若A、B兩個正方形紙片的面積之和為5,且圖2中陰影部分的面積為2,試求m、n的值.
(4)現(xiàn)將正方形紙片A、B并排放置后構(gòu)造新的正方形得圖3,將正方形紙片B放在正方形紙片A的內(nèi)部得圖4,若圖3和圖4中陰影部分的面積分別為12和1,則A、B兩個正方形紙片的面積之和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com