【題目】如圖,二次函數(shù)的圖象與x軸相交于A(3,0)、B(1,0)兩點,與y軸相交于點C(0,3),點C.D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D.
(1)D點坐標;
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍;
【答案】(1)D(2,3);(2);(3)2<x<1
【解析】
(1)先求出拋物線的對稱軸,再根據(jù)對稱性即可得;
(2)先根據(jù)點A、B坐標設立二次函數(shù)解析式的交點式,再將點C坐標代入即可得;
(3)根據(jù)二次函數(shù)的圖象位于一次函數(shù)的上方求解即可得.
(1)由圖象可知,二次函數(shù)的對稱軸為
,點D與點C關于對稱軸對稱
;
(2)設二次函數(shù)解析式為
把代入得
解得
則二次函數(shù)解析式為
即;
(3)要使一次函數(shù)值小于二次函數(shù)值,則二次函數(shù)的圖象位于一次函數(shù)的上方
由圖象可知,x的取值范圍為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=3,則下列結論:①F是CD的中點;②⊙O的半徑是2;③AE=CE;④S陰影=.其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:(一)如果兩個函數(shù)y1,y2,存在x取同一個值,使得y1=y2,那么稱y1,y2為“合作函數(shù)”,稱對應x的值為y1,y2的“合作點”;
(二)如果兩個函數(shù)為y1,y2為“合作函數(shù)”,那么y1+y2的最大值稱為y1,y2的“共贏值”.
(1)判斷函數(shù)y=x+2m與y=是否為“合作函數(shù)”,如果是,請求出m=1時它們的合作點;如果不是,請說明理由;
(2)判斷函數(shù)y=x+2m與y=3x﹣1(|x|≤2)是否為“合作函數(shù)”,如果是,請求出合作點;如果不是,請說明理由;
(3)已知函數(shù)y=x+2m與y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函數(shù)”,且有唯一合作點.
①求出m的取值范圍;
②若它們的“共贏值”為24,試求出m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為的外接圓,為與的交點,為線段延長線上一點,且.
(1)求證:直線是的切線.
(2)若為的中點,,.
①求的半徑;
②求的內心到點的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD交于點O,若增加一個條件,使ABCD成為菱形,下列給出的條件正確的是( )
A. AB=AD B. AC=BD C. ∠ABC=90° D. ∠ABC=∠ADC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
某玩具廠生產一種玩具,按照控制固定成本降價促銷的原則,使生產的玩具能夠及時售出,據(jù)市場調查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當一個角固定不變,而某種圖形在該角的內部變化,則我們稱這個角為墻角.
(1)如圖1,墻角=30°,如果AB=3,長度不變,在角內滑動,當OA=6時,則求出此時OB的長度.
(2)如圖2,墻角=30°,如果在AB的右邊作等邊,AB=3,長度不變,滑動過程中,請求出點O與點C的最大距離.
(3)如圖3,墻角=時,如果點E是一條邊上的一個點,=90°,其兩條邊與另一條邊交于點F與點D,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,正方形中,點是對角線的中點,點是線段上(不與,重合)的一個動點,過點作且交邊于點.
(1)求證:.
(2)如圖②,若正方形的邊長為2,過作于點,在點運動的過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值;若變化,請說明理由.
(3)如圖③,用等式表示線段,,之間的數(shù)量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com