【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是______(填寫序號).

【答案】②④

【解析】

利用二次函數(shù)的對稱軸、頂點(diǎn)坐標(biāo)、增減性、與坐標(biāo)軸的交點(diǎn)等性質(zhì)一一判斷即可.

-,a>0,

a>-b,

x=-1時(shí),y>0,

a-b+c>0,

2a+ca-b+c>0,故①錯誤,

若(﹣,y1),(﹣y2),(,y3)在拋物線上,

由圖象法可知,y1y2y3;故②正確,

∵拋物線與直線y=t有交點(diǎn)時(shí),方程ax2+bx+c=t有解,tn,

ax2+bx+c-t=0有實(shí)數(shù)解

要使得ax2+bx+k=0有實(shí)數(shù)解,則k=c-tc-n;故③錯誤,

設(shè)拋物線的對稱軸交x軸于H

,

b2-4ac=4,

x=,

|x1-x2|=,

AB=2PH,

BH=AH

PH=BH=AH,

∴△PAB是直角三角形,

PA=PB,

∴△PAB是等腰直角三角形.故④正確.

故答案為②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(-1,0),點(diǎn)B(3,0),y軸正半軸于點(diǎn)C,給出下列結(jié)論

a=-1, b=2, c=3;

②若0<x<4,則5a<y<-3a;

③對任意實(shí)數(shù)m,一定有am2+bm+a≤0;

④一元二次方程cx2+bx+a=0的兩個(gè)根為-1.其中正確的結(jié)論是(  )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,a是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)BD,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點(diǎn)D坐標(biāo),并直接寫出y1y2時(shí)x的取值范圍

(3)動點(diǎn)Px,0)x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AC=2AB,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)得到矩形AB′C′D′,使點(diǎn)B的對應(yīng)點(diǎn)B'落在AC上,B'C'交AD于點(diǎn)E,在B'C′上取點(diǎn)F,使B'F=AB.

(1)求證:AE=C′E.

(2)求∠FBB'的度數(shù).

(3)已知AB=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋中裝有20個(gè)只有顏色不同的球,其中5個(gè)黃球,8個(gè)黑球,7個(gè)紅球.

(1)求從袋中摸出一個(gè)球是黃球的概率;

(2)現(xiàn)從袋中取出若干個(gè)黑球,攪勻后,使從袋中摸出一個(gè)黑球的概率是,求從袋中取出黑球的個(gè)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠BAC90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對折,使點(diǎn)B落在點(diǎn)B′處,連結(jié)AB',BB',延長CDBB'于點(diǎn)E,設(shè)∠ABC2α(0°<α<45°).

1)如圖1,若ABAC,求證:CD2BE;

2)如圖2,若ABAC,試求CDBE的數(shù)量關(guān)系(用含α的式子表示);

3)如圖3,將(2)中的線段BC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EFBC于點(diǎn)O,設(shè)COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案