【題目】如圖,在△ABC中,AD,BE是兩條中線,則SEDC:SABC=( )

A.1:2
B.1:4
C.1:3
D.2:3

【答案】B
【解析】解:∵在△ABC中,AD,BE是兩條中線,

∴DE∥AB,DE= AB,

∴△EDC∽△ABC,

∴SEDC:SABC=( 2=1:4.

所以答案是:B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形中位線定理的相關(guān)知識(shí),掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)QE、F分別在BC、AB、AC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).

(1)當(dāng)AE=8時(shí),求EF的長(zhǎng);

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時(shí),y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5).線段CM的長(zhǎng)度記作y , 線段BP的長(zhǎng)度記作y , y和y關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒cm,當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是;
(2)設(shè)四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說(shuō)明理由;
(4)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于x、y的代數(shù)式(2x2+axy+6)﹣(2bx23x+5y1)的值與字母x所取的值無(wú)關(guān),試求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.

(1)求∠BCD的度數(shù);

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB30 cm,BC35 cm,∠B60°,有一動(dòng)點(diǎn)MAB1 cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)NBC2 cm/s的速度運(yùn)動(dòng),若M,N同時(shí)分別從AB出發(fā).

(1)經(jīng)過(guò)多少秒,BMN為等邊三角形;

(2)經(jīng)過(guò)多少秒,BMN為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點(diǎn),DEAB交于點(diǎn)G,EFAC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

①EFAC四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結(jié)論的為______(請(qǐng)將所有正確的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB=BOC=COD,下列結(jié)論中錯(cuò)誤的是( 。

A. OB、OC分別平分、

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一點(diǎn),過(guò)點(diǎn)P作EF∥AC,與菱形的兩條邊分別交于點(diǎn)E、F.設(shè)BP=x,EF=y,則下列圖象能大致反映y與x的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案