【題目】如圖,,等腰直角三角形的腰上,,將繞點逆時針旋轉,點的對應點恰好落在上,則的值為_____

【答案】.

【解析】

根據(jù)旋轉得出∠NCE=75°,求出∠NCO,設OC=a,則CN=2a,根據(jù)△CMN也是等腰直角三角形設CM=MN=x,由勾股定理得出x2+x2=2a2,求出x=a,得出CD=a,代入求出即可.

解:將三角形CDE繞點C逆時針旋轉75°,點E的對應點N恰好落在OA上,

∴∠ECN=75°

∵∠ECD=45°,

∴∠NCO=180°﹣75°﹣45°=60°,

∵AO⊥OB,

∴∠AOB=90°

∴∠ONC=30°

OC=a,則CN=2a

等腰直角三角形DCE旋轉到△CMN,

∴△CMN也是等腰直角三角形,

CM=MN=x,則由勾股定理得:x2+x2=2a2

x=a,

CD=CM=a

==,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:對角線互相垂直的圓內接四邊形叫做圓的奇妙四邊形.

1)如圖①,已知四邊形是⊙的奇妙四邊形,若_______;

2)如圖②,已知四邊形內接于⊙,對角線交于點,若,

①求證:四邊形是⊙的奇妙四邊形;

②作,請猜想之間的數(shù)量關系,并推理說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結論(14a+2b+c0;(2)方程ax2+bx+c0兩根之和小于零;(3yx的增大而增大;(4)一次函數(shù)yx+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。

A. 4 B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,O是邊AC上一點,以O為圓心,OA為半徑的圓分別交AB,AC于點E,D,在BC的延長線上取點F,使得BF=EF,EF與AC交于點G.

(1)試判斷直線EF與O的位置關系,并說明理由;

(2)若OA=2,A=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學活動中,黑板上畫著如圖所示的圖形,活動前老師在準備的四張卡片(大小、顏色、形狀相同)的正面上分別寫有如下四個等式中的一個等式:①;②;③;④;小英同學閉上眼睛從四張卡片中隨機抽出一張,再從剩下的卡片中隨機抽出另一張,請結合圖形回答下列問題:

1)當抽得②和④時,用②和④作條件能否判定四邊形是平行四邊形,請說明理由;

2)請你用樹狀圖或表格表示抽取兩張卡片上的條件的所有可能出現(xiàn)的結果(用序號表示)并求以已經抽取的兩張卡片上的條件為已知,使四邊形不能構成平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊合作20天可完成.甲工程隊單獨施工比乙工程隊單獨施工多用30天完成此項工程.

1)求甲、乙兩工程隊單獨完成此項工程各需要多少天?

2)若甲工程隊獨做a天后,再由甲、乙兩工程隊合作 天(用含a的代數(shù)式表示)可完成此項工程;

3)如果甲工程隊施工每天需付施工費1萬元,乙工程隊施工每天需付施工費2.5萬元,甲工程隊至少要單獨施工多少天后,再由甲、乙兩工程隊合作施工完成剩下的工程,才能使施工費不超過64萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著社會經濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學興趣小組隨機抽取了我市某單位部分職工進行調查,對職工購車情況分4類(A:車價40萬元以上;B:車價在2040萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中信息解答下列問題:

1)調查樣本人數(shù)為   ,樣本中B類人數(shù)百分比是   ,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是   ;

2)把條形統(tǒng)計圖補充完整;

3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從這5個人中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中, , , ,DAB邊的中點,EAC邊上一點,聯(lián)結DE,過點DBC邊于點F,聯(lián)結EF

(1)如圖1,當時,求EF的長;

(2)如圖2,當點EAC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;

(3)如圖3,聯(lián)結CDEF于點Q,當是等腰三角形時,請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, Rt△ABC ,∠ACB=90°,ACBC=1, Rt△ABC A 點逆時針旋轉 30°后得到 Rt△ADE, B 經過的路徑為,則圖中陰影部分的面積是_____

查看答案和解析>>

同步練習冊答案