【題目】有一種落地晾衣架如圖①所示,其原理是通過(guò)改變兩根支撐桿夾角的度數(shù)來(lái)調(diào)整晾衣桿的高度.圖②是支撐桿的平面示意圖,ABCD分別是兩根不同長(zhǎng)度的支撐桿,夾角∠BODα.若AO85 cm,BODO65 cm.問(wèn):當(dāng)α74°時(shí),較長(zhǎng)支撐桿的端點(diǎn)A離地面的高度h約為______cm.(參考數(shù)據(jù):sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6

【答案】120

【解析】

過(guò)OOEBD,過(guò)AAFBD,可得OEAF,利用等腰三角形的三線合一得到OE為角平分線,進(jìn)而求出同位角的度數(shù),在直角三角形AFB中,利用銳角三角函數(shù)定義求出h即可.

過(guò)OOEBD,過(guò)AAFBD,可得OEAF


BO=DO
OE平分∠BOD,
∴∠BOE=BOD=×74°=37°,
∴∠FAB=BOE=37°,
RtABF中,AB=85+65=150cm,
h=AF=ABcosFAB=150×0.8=120cm,
故答案為:120

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字12,3,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán),被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字12,3(如圖所示).

1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為

2)小龍和小東想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A是以BC為直徑的O上一點(diǎn),IABC的內(nèi)心,AI的延長(zhǎng)線交O于點(diǎn)D,過(guò)點(diǎn)DBC的平行線交ABAC的延長(zhǎng)線于E、F.下列說(shuō)法:①△DBC是等腰直角三角形;EFO相切;EF=2BC;點(diǎn)B、IC在以點(diǎn)D 為圓心的同一個(gè)圓上.其中一定正確的是_______(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A1,0),與y軸的交點(diǎn)B在(02)和(0,1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc0 4a+2b+c0 4acb28a abc.其中含所有正確結(jié)論的選項(xiàng)是( 。

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廬陽(yáng)春風(fēng)體育運(yùn)動(dòng)品商店從廠家購(gòu)進(jìn)甲,乙兩種T恤共400件,其每件的售價(jià)與進(jìn)貨量m(件)之間的關(guān)系及成本如下表所示:

1)當(dāng)甲種T恤進(jìn)貨250件時(shí),求兩種T恤全部售完的利潤(rùn)是多少元.

2)若所有的T恤都能售完,求該店獲得的總利潤(rùn)y(元)與乙種T恤的進(jìn)貨量x(件)之間的函數(shù)關(guān)系式;

3)在(2)的條件下已知兩種T恤進(jìn)貨量都不低于100件,且所進(jìn)的T恤全部售完,該商店如何安排進(jìn)貨才能獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)方法選擇:如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,連接ACBD,ABBCAC.求證:BDAD+CD

小穎認(rèn)為可用截長(zhǎng)法證明:在DB上截取DMAD,連接AM…

小軍認(rèn)為可用補(bǔ)短法證明:延長(zhǎng)CD至點(diǎn)N,使得DNAD…

請(qǐng)你選擇一種方法證明.

2)類比探究:(探究1)如圖②,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,BC是⊙O的直徑,ABAC.試用等式表示線段AD,BD,CD之間的數(shù)量關(guān)系,井證明你的結(jié)論.

(探究2)如圖③,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,∠ABC30°,則線段AD,BD,CD之間的等量關(guān)系式是   

3)拓展猜想:如圖④,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,BCACABabc,則線段AD,BD,CD之間的等量關(guān)系式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】瀾鑫商場(chǎng)為“雙十一購(gòu)物節(jié)”請(qǐng)甲乙兩個(gè)廣告公司布置展廳,已知乙單獨(dú)完成此項(xiàng)任務(wù)的天數(shù)是甲單獨(dú)完成此任務(wù)天數(shù)的2倍.若兩公司合作4天,再由甲公司單獨(dú)做3天就可以完成任務(wù).

1)甲公司與乙公司單獨(dú)完成這項(xiàng)任務(wù)各需多少天?

2)甲公司每天所需費(fèi)用為5萬(wàn)元,乙公司每天所需費(fèi)用為2萬(wàn)元,要使這項(xiàng)工作的總費(fèi)用不超過(guò)40萬(wàn)元,則甲公司至多工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,點(diǎn)和點(diǎn)是對(duì)角線上的兩點(diǎn),過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn)

1)求證:四邊形是平行四邊形.

2)若,BC=4,則的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,點(diǎn)DAB下方⊙O上一點(diǎn),點(diǎn)C為弧ABD中點(diǎn),連接CD,CA

1)若∠ABDα,求∠BDC(用α表示);

2)過(guò)點(diǎn)CCEABH,交ADE,∠CADβ,求∠ACE(用β表示);

3)在(2)的條件下,若OH5,AD24,求線段DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案