【題目】頂點(diǎn)在網(wǎng)格交點(diǎn)的多邊形叫做格點(diǎn)多邊形,如圖,在一個(gè)9×9的正方形網(wǎng)格中有一個(gè)格點(diǎn)△ABC設(shè)網(wǎng)格中小正方形的邊長為1個(gè)單位長度.
(1)在網(wǎng)格中畫出△ABC向上平移4個(gè)單位后得到的△A1B1C1;
(2)在網(wǎng)格中畫出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到的△AB2C2;.
【答案】
(1)解:如圖所示,△A1B1C1即為所求;
(2)解:如圖所示,△AB2C2即為所求.
【解析】(1)根據(jù)圖形平移的方向和距離確定出對應(yīng)點(diǎn)的位置,然后順次連結(jié)各點(diǎn)可得到△A1B1C1;
(2)根據(jù)圖形旋轉(zhuǎn)的方向和旋轉(zhuǎn)角的大小,得到對應(yīng)點(diǎn)的位置,然后順次連結(jié)各點(diǎn)即可.
【考點(diǎn)精析】本題主要考查了坐標(biāo)與圖形變化-平移的相關(guān)知識點(diǎn),需要掌握新圖形的每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這兩個(gè)點(diǎn)是對應(yīng)點(diǎn);連接各組對應(yīng)點(diǎn)的線段平行且相等才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點(diǎn).
(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(0,1),B(4,1),C為x軸正半軸上一點(diǎn),且AC平分∠OAB.
(1)求證:∠OAC=∠OCA;
(2)如圖2,若分別作∠AOC的三等分線及∠OCA的外角的三等分線交于點(diǎn)P,即滿足∠POC= ∠AOC,∠PCE= ∠ACE,求∠P的大。
(3)如圖3,在(2)中,若射線OP、OC滿足∠POC= ∠AOC,∠PCE= ∠ACE,猜想∠OPC的大小,并證明你的結(jié)論(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
《張丘建算經(jīng)》是一部數(shù)學(xué)問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿。其中提出并解決了一個(gè)在數(shù)學(xué)史上非常著名的不定方程問題,通常稱為“百雞問題”:“今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一。凡百錢買雞百只,問雞翁、母、雛各幾何!
譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,F(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?
結(jié)合你學(xué)過的知識,解決下列問題:
(1)若設(shè)公雞有x只,母雞有y只,
①則小雞有只,買小雞一共花費(fèi)文錢;(用含x,y的式子表示)
②根據(jù)題意列出一個(gè)含有x,y的方程: ;
(2)若對“百雞問題”增加一個(gè)條件:公雞數(shù)量是母雞數(shù)量的3倍,求此時(shí)公雞、母雞、小雞各有多少只?
(3)除了問題(2)中的解之外,請你再直接寫出兩組符合“百雞問題”的解。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫成省略加號和的形式后為-6-7-2+9的式子是( )
A. (-6)-(+7)-(-2)+(+9) B. -(+6)-(-7)-(+2)-(+9)
C. (-6)+(-7)+(+2)-(-9) D. -6-(+7)+(-2)-(-9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B在線段AC上,且BC=2AB,D,E分別是AB,BC的中點(diǎn).則下列結(jié)論:①AB= AC;②B是AE的中點(diǎn);③EC=2BD;④DE=AB.其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個(gè)單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時(shí)一動點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動,設(shè)它們運(yùn)動的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com