如圖,兩個半圓如圖放置,大半圓中長為8cm的弦AB平行于直徑CD,且與小半圓相切,則圖中陰影部分的面積為______cm2
將小圓移動,使其與大圓的圓心重合于點O,切點為E,
連接OE,OB,
則OE⊥AB,
∴BE=
1
2
AB=
1
2
×8=4(cm),
∵S陰影=S大半圓-S小半圓=
1
2
πOB2-
1
2
πOE2=
1
2
π(OB2-OE2)=
1
2
πBE2=8π(cm2).
故答案為:8π.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結DE.
(1)求證:DE與⊙O相切;
(2)連結OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的半徑OC=5cm,直線L⊥OC,垂足為H,且L交⊙O于A,B兩點,AB=8cm,則L沿OC所在直線向下平移( 。ヽm時與⊙O相切.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AC為直徑的圓分別交AB和BC于E、D兩點,AD與EC交于G點.過點D作DF⊥AB交AB于F,交AC的延長線于H.
(1)求證:FH為⊙O的切線;
(2)若AC=6,BC=4,求DG.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是Rt△ABC的外接圓,點O在AB上,BD⊥AB,點B是垂足,ODAC,連接CD.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為10cm,∠A=60°,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知AD為⊙O的切線,⊙O的直徑是AB=2,弦AC=1,則∠CAD=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知⊙O過正方形ABCD的頂點A、B,且與CD邊相切,若正方形的邊長為2,則圓的半徑為( 。
A.
4
3
B.
5
4
C.
5
2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,切點為A、B,若OP=4,PA=2
3
,則∠AOB的度數(shù)為(  )
A.60°B.90°C.120°D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,⊙O交BC的中點于D,DE⊥AC于E,連接AD,則下列結論正確的個數(shù)是( 。
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切線.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案