(2013•工業(yè)園區(qū)二模)如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中AB=8cm,量角器O刻度線的端點N與點A重合,射線CP從CA處出發(fā)沿順時針方向以每秒2度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點E,第35秒時,點E在量角器上對應(yīng)劃過的
AE
的長度是
28π
9
28π
9
cm.(結(jié)果保留π).
分析:連結(jié)OC、OE,先根據(jù)直角三角形斜邊上的中線性質(zhì)得到OC=OA=OB,即C點在以AB為直徑的圓上,再根據(jù)圓周角定理得到∠EOA=2∠ECA=2×35×2°=140°,然后根據(jù)弧長根據(jù)計算即可.
解答:解:連結(jié)OC、OE,如圖,
∵AB為量角器的直徑,
∴OC為直角三角形ACB斜邊上的中線,
∴OC=OA=OB,即C點在以AB為直徑的圓上,
∴∠EOA=2∠ECA,
∵∠ECA=35×2°=70°,
∴∠EOA=140°,
AE
的長度=
140•π•4
180
=
28π
9
(cm).
故答案為
28π
9
點評:本題考查了弧長的計算:弧長=
nπ•R
180
(n為弧所對的圓心角的度數(shù),R為圓的半徑).也考查了圓周角定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•工業(yè)園區(qū)二模)某班50名同學積極響應(yīng)“為雅安地震災(zāi)區(qū)獻愛心捐款活動”,并將所捐款情況統(tǒng)計并制成統(tǒng)計圖,根據(jù)圖中信息,捐款金額的眾數(shù)和中位數(shù)分別是
30,30
30,30
元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•工業(yè)園區(qū)二模)設(shè)函數(shù)y=
3
x
與y=x-2的圖象的交點坐標為(a,b),則
1
a
-
1
b
的值為
-
2
3
-
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•工業(yè)園區(qū)二模)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.當線段AM最短時,重疊部分的面積是
96
25
96
25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•工業(yè)園區(qū)二模)如圖1,平面直角坐標系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,點C是AB的中點,CD⊥AB且CD=AB.直線BE與y軸平行,點F是射線BE上的一個動點,連接AD、AF、DF.
(1)若點F的坐標為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點P是此拋物線上一個動點,點Q在此拋物線的對稱軸上,以點A、F、P、Q為頂點構(gòu)成的四邊形是平行四邊形,請直接寫出點Q的坐標;
(2)若2b+c=-2,b=-2-t,且AB的長為kt,其中t>0.如圖2,當∠DAF=45°時,求k的值和∠DFA的正切值.

查看答案和解析>>

同步練習冊答案