【題目】如圖,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AE于點E.
(1)求證:△BEF∽△DBC.
(2)若⊙O的半徑為3,∠C=30°,求BE的長.
【答案】(1)見解析;(2)BE=3.
【解析】
(1)連接OB,根據(jù)切線的性質(zhì)可得出∠ABO=90°,由OB=OD可得出∠OBD=∠ODB,根據(jù)等角的余角相等可得出∠EBF=∠CDB,根據(jù)平行線的性質(zhì)結(jié)合直徑對的圓周角為90度,即可得出∠EFB=∠CBD=90°,進而即可證出△BEF∽△DCB;
(2)通過解直角三角形可得出BD、BC的長,由三角形中位線定理可得出BF的長,再利用相似三角形的性質(zhì)即可求出BE的長.
(1)證明:連接OB,如圖所示.
∵AE與⊙O相切,
∴∠ABO=90°.
∵OB=OD,
∴∠OBD=∠ODB.
∵∠ABO=∠ABD+∠OBD=90°,
∴∠ODB+∠ABD=90°.
∵CD為直徑,
∴∠CBD=90°,
∴∠EBF+∠ABD=90°,
∴∠EBF=∠ODB,即∠EBF=∠CDB.
∵OE∥BD,
∴∠CFO=90°,
∴∠EFB=∠CBD=90°,
∴△BEF∽△DCB.
(2)解:在Rt△BCD中,∠CBD=90°,∠C=30°,CD=6,
∴BD=3,BC=3.
∵OE∥BD,點O為CD的中點,
∴OF為△BCD的中位線,
∴OF=BD=,BF=BC=.
∵△BEF∽△DCB,
∴,即,
∴BE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E在AD上,且EC平分∠BED.
(1)△BEC是否為等腰三角形?證明你的結(jié)論;
(2)若AB=2,∠DCE=22.5°,求BC長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張三角形紙片沿DE折疊,當點A落在四邊形BCED的內(nèi)部時,∠A、∠1、∠2之間的關(guān)系是( )
A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2
C. 3∠A=∠1+∠2 D. 4∠A=∠1+∠2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一架云梯AB長25米,如圖那樣斜靠在一面墻AC上,這時云梯底端B離墻底C的距離BC為7米.
(1)這云梯的頂端距地面AC有多高?
(2)如果云梯的頂端A下滑了4米,那么它的底部B在水平方向向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗田,要使試驗田的面積是570平方米,問道路應該多寬?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】是等邊三角形,為平面內(nèi)的一個動點,,平分,且.
(1)當與重合時(如圖1),求的度數(shù);
(2)當在的內(nèi)部時(如圖2),求的度數(shù);
(3)當在的外部時,請你直接寫出的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示轉(zhuǎn)盤平均分成份,分別標有,,…,這個數(shù)字,轉(zhuǎn)盤上有固定的指針,轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指向的區(qū)域?qū)臄?shù)字即為轉(zhuǎn)出的數(shù)字(若指針指向分界處要重新轉(zhuǎn)動,直至指到非分界處).
(1)轉(zhuǎn)出的數(shù)字為奇數(shù)的概率是多少?
(2)轉(zhuǎn)出的數(shù)字是的倍數(shù)的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com