【題目】從邵陽市到長沙的高鐵列車?yán)锍瘫绕湛炝熊嚴(yán)锍炭s短了75千米,運行時間減少了4小時,已知邵陽市到長沙的普快列車?yán)锍虨?/span>306千米,高鐵列車平均時速是普快列車平均時速的3.5倍.
(1)求高鐵列車的平均時速;
(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會議,如果他買到當(dāng)日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準(zhǔn)點到達(dá)的情況下他能在開會之前趕到嗎?
【答案】 (1)210千米/小時;(2)能在開會之前趕到.
【解析】
(1)設(shè)普快的平均時速為x千米/小時,高鐵列車的平均時速為3.5x千米/小時,根據(jù)題意可得,高鐵走(306-75)千米比普快走306千米時間減少了4小時,據(jù)此列方程求解;
(2)求出劉老師所用的時間,然后進(jìn)行判斷.
(1)設(shè)普快的平均時速為x千米/小時,高鐵列車的平均時速為3.5x千米/小時,
由題意得,=4,
解得:x=60,
經(jīng)檢驗,x=60是原分式方程的解,且符合題意,
則3.5x=210,
答:高鐵列車的平均時速為210千米/小時;
(2)(306﹣75)÷(3.5×60)=1.1小時即66分鐘,
66+20=86分鐘,
而9:20到11:00相差100分鐘,
∵100>86,故在高鐵列車準(zhǔn)點到達(dá)的情況下他能在開會之前趕到.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知∠AOB,OA=OB,點E在OB邊上,四邊形AEBF是矩形,請你只用無刻度的直尺在圖中畫出菱形AOBG.(請保留畫圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k﹣1)x+k2=0有兩個不相等的實數(shù)根,那么k的最大整數(shù)值是( )
A.﹣2
B.﹣1
C.0
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在棋盤中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個軸對稱圖形,請在圖中畫出該圖形的對稱軸;
(2)在其他格點位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個軸對稱圖形,請直接寫出棋子P的位置的坐標(biāo).(寫出2個即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為a,b的兩個正方形并排放在一起,請計算圖中陰影部分面積,并求出當(dāng)a+b=16,ab=60時陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足.D為線段AC的中點.在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為,.
(1)則A點的坐標(biāo)為 ;點C的坐標(biāo)為 .D點的坐標(biāo)為 .
(2)已知坐標(biāo)軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負(fù)方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達(dá)A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.
(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當(dāng)點E在線段OA上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】喜歡探究的亮亮同學(xué)拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.
(1)亮亮想知道正方形紙片的邊長,請你幫他求出正方形紙片的邊長;(結(jié)果保留根號)
(2)在長方形紙片上截出兩個完整的正方形紙片,面積分別為和,亮亮認(rèn)為兩個正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com