【小題1】觀察與發(fā)現(xiàn):
在一次數(shù)學(xué)課堂上,老師把三角形紙片ABC(AB>AC)沿過A點(diǎn)的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖②).有同學(xué)說此時(shí)的△AEF是等腰三角形,你同意嗎?請(qǐng)說明理由.
【小題2】實(shí)踐與運(yùn)用
將矩形紙片ABCD沿過點(diǎn)B的直線折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,折痕為BE(如圖③);再沿過點(diǎn)E的直線折疊,使點(diǎn)D落在BE上的點(diǎn)處,折痕為EG(如圖④);再展平紙片(如圖⑤).試問:圖⑤中∠的大小是多少?(直接回答,不用說明理由).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年浙江省衢州華外九年級(jí)第一學(xué)期第三次質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題
(本題10分)已知:正方形ABCD的邊長(zhǎng)為a,P是邊CD上一個(gè)動(dòng)點(diǎn)不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF.
【小題1】觀察計(jì)算:(1)如圖1,當(dāng)a=4,b=1時(shí),四邊形ABFD的面積為 ;
(2)如圖2,當(dāng)a=4,b=2時(shí),四邊形ABFD的面積為 ;
(3)如圖3,當(dāng)a=4,b=3時(shí),四邊形ABFD的面積為 ;
【小題2】探索發(fā)現(xiàn):(4)根據(jù)上述計(jì)算的結(jié)果,你認(rèn)為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關(guān)系?證明你的結(jié)論;
【小題3】綜合應(yīng)用:(5)農(nóng)民趙大伯有一塊正方形的土地(如圖),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側(cè)補(bǔ)給趙大伯一塊土地,補(bǔ)償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來正方形土地的面積相等,M、E、B三點(diǎn)要在一條直線上,請(qǐng)你畫圖說明,如何確定M點(diǎn)的位置.(要求尺規(guī)作圖,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年江蘇GSJY八年級(jí)第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
【小題1】 (1)觀察發(fā)現(xiàn)
如(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。
做法如下:作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P
再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小.
做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為 . (2分)
【小題2】(2)實(shí)踐運(yùn)用
如圖,菱形ABCD的兩條對(duì)角線分別長(zhǎng)6和8,點(diǎn)P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),求PM+PN的最小值。(5分)
【小題3】(3)拓展延伸
如(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法. (5分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com