【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分線交于點O1稱為第1次操作,作∠O1DC、∠O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、∠O2CD的平分線交于點O3稱為第3次操作,…,則第5次操作后∠CO5D的度數(shù)是_____.
【答案】175°
【解析】如圖所示,∵∠ADC、∠BCD的平分線交于點O1,
∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
∵∠O1DC、∠O1CD的平分線交于點O2,
∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
又∵四邊形ABCD中,∠DAB+∠ABC=200°,
∴∠ADC+∠DCB=160°,
∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
故答案為:175°.
科目:初中數(shù)學 來源: 題型:
【題目】有一數(shù)值轉換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結果是12;第2次輸出的結果是6;依次繼續(xù)下去……第2018次輸出的結果是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,MN是⊙O的直徑,作AB⊥MN,垂足為點D,連接AM,AN,點C為 上一點,且 = ,連接CM,交AB于點E,交AN于點F,現(xiàn)給出以下結論: ①AD=BD;②∠MAN=90°;③ = ;④∠ACM+∠ANM=∠MOB;⑤AE= MF.
其中正確結論的個數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.
(1)如圖2,固定△ABC,將△A′B′C繞點C旋轉,當點A′恰好落在AB邊上時,
①∠CA′B′=;旋轉角ɑ=(0°<ɑ<90°),線段A′B′與AC的位置關系是;
(2)②設△A′BC的面積為S1 , △AB′C的面積為S2 , 則S1與S2的數(shù)量關系是什么?證明你的結論;
(3)如圖3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于點Q.若在射線OM上存在點F,使S△PNF=S△OPQ , 請直接寫出相應的OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正整數(shù)從1開始,按如圖所表示的規(guī)律排列.規(guī)定圖中第m行、第n列的位置
記作(m,n),如正整數(shù)8的位置是(2,3),則正整數(shù)139的位置記作_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是直線AB上一點,OD平分∠BOC,∠COE=90°.
(1)若∠AOC=48°,求∠DOE的度數(shù).
(2)若∠AOC=α,則∠DOE= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某發(fā)電廠共有6臺發(fā)電機發(fā)電,每臺的發(fā)電量為300萬千瓦/月.該廠計劃從今年7月開始到年底,對6臺發(fā)電機各進行一次改造升級.每月改造升級1臺,這臺發(fā)電機當月停機,并于次月再投入發(fā)電,每臺發(fā)電機改造升級后,每月的發(fā)電量將比原來提高20%.已知每臺發(fā)電機改造升級的費用為20萬元.將今年7月份作為第1個月開始往后算,該廠第x(x是正整數(shù))個月的發(fā)電量設為y(萬千瓦).
(1)求該廠第2個月的發(fā)電量及今年下半年的總發(fā)電量;
(2)求y關于x的函數(shù)關系式;
(3)如果每發(fā)1千瓦電可以盈利0.04元,那么從第1個月開始,至少要到第幾個月,這期間該廠的發(fā)電盈利扣除發(fā)電機改造升級費用后的盈利總額ω1(萬元),將超過同樣時間內(nèi)發(fā)電機不作改造升級時的發(fā)電盈利總額ω2(萬元)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的二次函數(shù)y═ax2+bx+c的圖象,下列結論:①b2﹣4ac>0;②c>1;③2a﹣b<0;④a+b+c<0,其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com