已知二次函數(shù)中,函數(shù)與自變量的部分對(duì)應(yīng)值如下表:

(1)求該二次函數(shù)的關(guān)系式;

(2)當(dāng)為何值時(shí),有最小值,最小值是多少?

(3)若,兩點(diǎn)都在該函數(shù)的圖象上,試比較的大。

 

【答案】

(1)  (2) x=2時(shí),y有最小值為1  (3)①當(dāng)2m-3<0,即m<時(shí),y1>y2;②當(dāng)2m-3=0,即m=時(shí),y1=y2;③當(dāng)2m-3>0,即m>時(shí),y1<y2

【解析】本題主要考查了用待定系數(shù)法求二次函數(shù)的解析式和二次函數(shù)的最值的求法即其性質(zhì).

(1)從表格中取出2組解,利用待定系數(shù)法求解析式;

(2)利用頂點(diǎn)坐標(biāo)求最值;

(3)利用二次函數(shù)的單調(diào)性比較大。

解:(1)根據(jù)題意,

當(dāng)x=0時(shí),y=5;

當(dāng)x=1時(shí),y=2;

∴5=c,2=1+b+c,

解得:b=-4,c=5

∴該二次函數(shù)關(guān)系式為y=x2-4x+5;

(2)∵y=x2-4x+5=(x-2)2+1,

∴當(dāng)x=2時(shí),y有最小值,最小值是1,

(3)∵A(m,y1),B(m+1,y2)兩點(diǎn)都在函數(shù)y=x2-4x+5的圖象上,

所以,y1=m2-4m+5,

y2=(m+1)2-4(m+1)+5=m2-2m+2,

y2-y1=(m2-2m+2)-(m2-4m+5)=2m-3,

∴①當(dāng)2m-3<0,即m<時(shí),y1>y2;

②當(dāng)2m-3=0,即m=時(shí),y1=y2;

③當(dāng)2m-3>0,即m>時(shí),y1<y2

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,其頂點(diǎn)的橫坐標(biāo)為1,且過(guò)點(diǎn)(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達(dá)式;
(2)若直線l:y=kx(k≠0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是位于該二次函數(shù)對(duì)稱軸右邊圖象上不與頂點(diǎn)重合的任意一點(diǎn),試比較精英家教網(wǎng)銳角∠PCO與∠ACO的大小(不必證明),并寫(xiě)出此時(shí)點(diǎn)P的橫坐標(biāo)xp的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題(一):觀察函數(shù)y=
1
2
x2-x-4
的圖象,填空:當(dāng)函數(shù)值y>0時(shí),x的取值范圍是
 
;當(dāng)函數(shù)值y<0時(shí),x的取值范圍是
 

問(wèn)題(二):已知二次函數(shù)y=(p-3)x2+(10-p2)x+q,當(dāng)1<x<5時(shí),函數(shù)值y為正,當(dāng)x<1或x>5時(shí),函數(shù)值y為負(fù).
(Ⅰ)求二次函數(shù)的解析式;
(Ⅱ)設(shè)直線y=
1
2
x+1
與二次函數(shù)的圖象交于點(diǎn)A、B.
(1)求點(diǎn)A、B的坐標(biāo),并在給定的直角坐標(biāo)系中畫(huà)出直線及二次函數(shù)的圖象;
(2)設(shè)平行于y軸的直線x=t、x=t+2分別交線段AB于點(diǎn)E、F,交二次函數(shù)的圖象于點(diǎn)H、G(H、G不與A、B重合).
①求t的取值范圍;
②是否能適當(dāng)選擇點(diǎn)E的位置,使四邊形EFGH是平行四邊形?如果能,求出此時(shí)點(diǎn)E的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(43):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,其頂點(diǎn)的橫坐標(biāo)為1,且過(guò)點(diǎn)(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達(dá)式;
(2)若直線l:y=kx(k≠0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是位于該二次函數(shù)對(duì)稱軸右邊圖象上不與頂點(diǎn)重合的任意一點(diǎn),試比較銳角∠PCO與∠ACO的大。ú槐刈C明),并寫(xiě)出此時(shí)點(diǎn)P的橫坐標(biāo)xp的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省紹興市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,其頂點(diǎn)的橫坐標(biāo)為1,且過(guò)點(diǎn)(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達(dá)式;
(2)若直線l:y=kx(k≠0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是位于該二次函數(shù)對(duì)稱軸右邊圖象上不與頂點(diǎn)重合的任意一點(diǎn),試比較銳角∠PCO與∠ACO的大小(不必證明),并寫(xiě)出此時(shí)點(diǎn)P的橫坐標(biāo)xp的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案