【題目】Rt△ABC中,AB=AC,點(diǎn)D為BC中點(diǎn).∠MDN=900,∠MDN繞點(diǎn)D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點(diǎn).下列結(jié)論
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD與EF可能互相平分,
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
∵Rt△ABC中,AB=AC,點(diǎn)D為BC中點(diǎn).∠MDN=900,
∴AD =DC,∠EAD=∠C=450,∠EDA=∠MDN-∠ADN =900-∠AND=∠FDC。
∴△EDA≌△FDC(ASA)。∴AE=CF。∴BE+CF=" BE+" AE=AB。
在Rt△ABC中,根據(jù)勾股定理,得AB=BC。∴(BE+CF)=BC。∴結(jié)論①正確。
設(shè)AB=AC=a,AE=b,則AF="BE=" a-b。
∴。
∴。∴結(jié)論②正確。
如圖,過點(diǎn)E作EI⊥AD于點(diǎn)I,過點(diǎn)F作FG⊥AD于點(diǎn)G,過點(diǎn)F作FH⊥BC于點(diǎn)H,ADEF相交于點(diǎn)O。
∵四邊形GDHF是矩形,△AEI和△AGF是等腰直角三角形,
∴EO≥EI(EF⊥AD時(shí)取等于)=FH=GD,
OF≥GH(EF⊥AD時(shí)取等于)=AG。
∴EF=EO+OF≥GD+AG=AD。∴結(jié)論④錯(cuò)誤。
∵△EDA≌△FDC,
∴。∴結(jié)論③錯(cuò)誤。
又當(dāng)EF是Rt△ABC中位線時(shí),根據(jù)三角形中位線定理知AD與EF互相平分。
∴結(jié)論⑤正確。
綜上所述,結(jié)論①②⑤正確。故選C。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=,BC=3,在BC邊上取兩點(diǎn)E、F(點(diǎn)E在點(diǎn)F的左邊),以EF為邊所作等邊△PEF,頂點(diǎn)P恰好在AD上,直線PE、PF分別交直線AC于點(diǎn)G、H.
(1)求△PEF的邊長(zhǎng);
(2)若△PEF的邊EF在線段CB上移動(dòng),試猜想:PH與BE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;
(3)若△PEF的邊EF在射線CB上移動(dòng)(分別如圖②和圖③所示,CF>1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)將長(zhǎng)方形紙片ABCD的一邊CD沿著CQ向下折疊,使點(diǎn)D落在邊AB上的點(diǎn)P處.
(1)試判斷線段CQ與PD的關(guān)系,并說明理由;
(2)如圖(2),若AB=CD=5,AD=BC=3.求AQ的長(zhǎng);
(3)如圖(2),BC=3,取CQ的中點(diǎn)M,連接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是⊙O外一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為A,連接PO并延長(zhǎng),交⊙O于B、C兩點(diǎn).
(1)求證:△PBA∽△PAC;
(2)若∠BAP=30°,PB=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點(diǎn)D、F,連接DE,CD,DE與BC相交于點(diǎn)G.
(1)求證:DE是△ABC的外接圓的直徑;
(2)設(shè)OG=3,CD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形.Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).
(1)先將Rt△ABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1,并寫出A1的坐標(biāo);
(2)將Rt△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計(jì)算Rt△A1B1C1在上述旋轉(zhuǎn)過程中C1所經(jīng)過的路程以及Rt△A1B1C1掃過的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).
請(qǐng)從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑為AB,D是半圓上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接BD并延長(zhǎng)至點(diǎn)C,使CD=BD,連接AC,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)請(qǐng)猜想DE與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)AB=4,∠BAC=45°時(shí),求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com