【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,點(diǎn)D為AC邊上的動(dòng)點(diǎn),點(diǎn)D從點(diǎn)C出發(fā),沿邊CA向點(diǎn)A運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)A時(shí)停止,若設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.點(diǎn)D運(yùn)動(dòng)的速度為每秒1個(gè)單位長度.
(1)當(dāng)t=2時(shí),CD= , AD= ;
(2)求當(dāng)t為何值時(shí),△CBD是直角三角形,說明理由;
(3)求當(dāng)t為何值時(shí),△CBD是以BD或CD為底的等腰三角形?并說明理由.
【答案】(1)2,8;(2)t=3.6秒或10秒(3)t=6秒或7.2秒時(shí)
【解析】試題分析:(1)根據(jù)CD=速度×時(shí)間列式計(jì)算即可得解,利用勾股定理列式求出AC,再根據(jù)AD=AC-CD代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(2)分①∠CDB=90°時(shí),利用△ABC的面積列式計(jì)算即可求出BD,然后利用勾股定理列式求解得到CD,再根據(jù)時(shí)間=路程÷速度計(jì)算;②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,然后根據(jù)時(shí)間=路程÷速度計(jì)算即可得解;
(3)分①CD=BC時(shí),CD=6;②BD=BC時(shí),過點(diǎn)B作BF⊥AC于F,根據(jù)等腰三角形三線合一的性質(zhì)可得CD=2CF,再由(2)的結(jié)論解答.
試題解析:(1)t=2時(shí),CD=2×1=2,
∵∠ABC=90°,AB=8,BC=6,
∴AC==10,
AD=AC-CD=10-2=8;
故答案是:2;8.
(2)①∠CDB=90°時(shí),S△ABC=ACBD=ABBC,
即×10BD=×8×6,
解得BD=4.8,
∴CD==3.6,
t=3.6÷1=3.6秒;
②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,
t=10÷1=10秒,
綜上所述,t=3.6或10秒;
故答案為:(1)2,8;(2)3.6或10秒;
(3)①CD=BC時(shí),CD=6,t=6÷1=6;
②BD=BC時(shí),如圖2,過點(diǎn)B作BF⊥AC于F,
則CF=3.6,
CD=2CF=3.6×2=7.2,
∴t=7.2÷1=7.2,
綜上所述,t=6秒或7.2秒時(shí),△CBD是以BD或CD為底的等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)“低碳生活”,人們常選擇以自行車作為代步工具、圖(1)所示的是一輛自行車的實(shí)物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長分別為45cm和60cm,且它們互相垂直,座桿CE的長為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求車架檔AD的長;
(2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: ,點(diǎn)P、H、B、C、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求山坡A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了進(jìn)一步改進(jìn)本校七年級數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級所有班級中,每班隨機(jī)抽取了6名學(xué)生,并對他們的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個(gè)題目,問卷時(shí)要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng))結(jié)果進(jìn)行了統(tǒng)計(jì),現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學(xué)生,請你估算該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC內(nèi)一點(diǎn),且∠1=∠2,則∠BPC等于( )
A. 110° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,原有一大長方形,被分割成3個(gè)正方形和2個(gè)長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標(biāo)號為( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)2、3、6、8、x的眾數(shù)是x,其中x又是不等式組 的整數(shù)解,則這組數(shù)據(jù)的中位數(shù)可能是( )
A.3
B.4
C.6
D.3或6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com