【題目】拋物線y=ax2+bx+ca≠0)如圖所示,現(xiàn)有下列四個(gè)結(jié)論:①abc>0 ②b2-4ac<0 ③c<4b ④a+b>0.其中正確的結(jié)論有( 。

A. 1個(gè) B. 3個(gè) C. 2個(gè) D. 4個(gè)

【答案】C

【解析】

根據(jù)拋物線開口方向得a<0,再根據(jù)對稱軸得b>0,根據(jù)拋物線與y軸的交點(diǎn)在x軸上方得c>0,于是abc<0,所以可對①進(jìn)行判斷;

根據(jù)拋物線與x軸有兩個(gè)交點(diǎn)可對②進(jìn)行判斷;

根據(jù)拋物線的對稱軸為直線x=-=1,則b=-2a,拋物線與x軸另一交點(diǎn)坐標(biāo)為(-1,0),所以當(dāng)x=-2時(shí),y<0,即4a-2b+c<0,然后把a(bǔ)=-b代入得到c<4b,于是可對③進(jìn)行判斷;

根據(jù)b=-2a可得a+b=-a>0,則可對④進(jìn)行判斷.

∵拋物線開口相下,

∴a<0,

∵拋物線對稱軸為直線x=->0,

∴b>0,

∵拋物線與y軸的交點(diǎn)在x軸上方,

∴c>0,

∴abc<0,所以①錯(cuò)誤;

∵拋物線與x軸有兩個(gè)交點(diǎn),

∴b2-4ac>0,所以②錯(cuò)誤;

∵對稱軸為直線x=-=1,

∴b=-2a,拋物線與x軸另一交點(diǎn)坐標(biāo)為(-1,0),

∴當(dāng)x=-2時(shí),y<0,即4a-2b+c<0,

∴-2b-2b+c<0,即c<4b,所以③正確;

∵b=-2a,

∴a+b=-a>0,所以④正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時(shí)BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形紙片.把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊上,折痕為AF.且AB=10cmAD=8cm、DE=6cm

1)求證:平行四邊形ABCD是矩形;

2)如圖2,以點(diǎn)B為坐標(biāo)原點(diǎn),水平方向、豎直方向?yàn)?/span>x軸、y軸建立平面直角坐標(biāo)系,求直線AF的解析式;

3)在(2)中的坐標(biāo)系內(nèi)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、AE、F為頂點(diǎn)的四邊形是平行四邊形?若不存在,請說明理由;若存在,直接寫出點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,36,10…這樣的數(shù)稱為三角形數(shù),而把1,4,9,16…這樣的數(shù)稱為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是( 。

A.133+10B.259+16C.3615+21D.4918+31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是關(guān)于的方程的一個(gè)實(shí)數(shù)根,并且這個(gè)方程的兩個(gè)實(shí)數(shù)根恰好是等腰三角形的兩條邊長,則的周長為(

A. 6 B. 8 C. 10 D. 8或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(m>0)的圖象的一個(gè)交點(diǎn),ABx軸,垂足為B,且AB=

(1)求這個(gè)反比例函數(shù)的解析式;

(2)當(dāng)1<x<4,求反比例函數(shù)y=的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售兩種型號(hào)的飲水機(jī),八月份銷售A種型號(hào)的飲水機(jī)150個(gè)和B種型號(hào)的飲水機(jī)200個(gè).

(1)商場八月份銷售飲水機(jī)時(shí),A種型號(hào)的售價(jià)比B種型號(hào)的2倍少10元,總銷售額為88500元,那么B種型號(hào)的飲水機(jī)的單價(jià)是每件多少元?

(2)為了提高銷售量,商場九月份銷售飲水機(jī)時(shí),A種型號(hào)的售價(jià)比八月份A種型號(hào)售價(jià)下降了a%(a>0),且A種型號(hào)的銷量比八月份A種型號(hào)的銷量提高了a%;B種型號(hào)的售價(jià)比八月份的B種型號(hào)的售價(jià)下降了a%,但B種型號(hào)的銷售量與八月份的銷售量相同,結(jié)果九月份的總銷售額也是88500元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,, 點(diǎn)的中點(diǎn),的延長線于.

求證: (1)

(2) 垂直平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為準(zhǔn)備母親節(jié)禮物,同學(xué)們委托小明用其支付寶余額團(tuán)購鮮花或禮盒.每束鮮花的售價(jià)相同,每份禮盒的售價(jià)也相同.若團(tuán)購15束鮮花和18份禮盒,余額差80元;若團(tuán)購18束鮮花和15份禮盒,余額剩70元.若團(tuán)購19束鮮花和14份禮盒,則支付寶余額剩_______元.

查看答案和解析>>

同步練習(xí)冊答案