【題目】寧波軌道交通4號(hào)線已開工建設(shè),計(jì)劃2020年通車試運(yùn)營(yíng).為了了解鎮(zhèn)民對(duì)4號(hào)線地鐵票的定價(jià)意向,某鎮(zhèn)某校數(shù)學(xué)興趣小組開展了“你認(rèn)為寧波4號(hào)地鐵起步價(jià)定為多少合適”的問(wèn)卷調(diào)查,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計(jì)圖,根據(jù)圖中所給出的信息解答下列問(wèn)題:

(1)求本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù);
(2)請(qǐng)你把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果在該鎮(zhèn)隨機(jī)咨詢一位居民,那么該居民支持“起步價(jià)為2元或3元”的概率是
(4)假設(shè)該鎮(zhèn)有3萬(wàn)人,請(qǐng)估計(jì)該鎮(zhèn)支持“起步價(jià)為3元”的居民大約有多少人?

【答案】
(1)解:由題意可得,

同意定價(jià)為5元的所占的百分比為:18°÷360°×100%=5%,

∴本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù)為:10÷5%=200(人),

即本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù)有200人;


(2)解:由題意可得,

2元的有:200×50%=100人,

3元的有:200﹣100﹣30﹣10=60人,

補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示;


(3)
(4)解:由題意可得,

(人),

即該鎮(zhèn)支持“起步價(jià)為3元”的居民大約有9000人.


【解析】解: (3)由題意可得,該居民支持“起步價(jià)為2元或3元”的概率是: ,故答案為: ; (1)根據(jù)5元在扇形統(tǒng)計(jì)圖中的圓心角和人數(shù)可以解答本題;(2)根據(jù)(1)中的答案和統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得條形統(tǒng)計(jì)圖中的未知數(shù)據(jù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)種完整;(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以得到該居民支持“起步價(jià)為2元或3元”的概率;(4)根據(jù)前面求得的數(shù)據(jù)可以估計(jì)該鎮(zhèn)支持“起步價(jià)為3元”的居民人數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對(duì)應(yīng)值如下表:

x

﹣1

0

1

2

3

ax2+bx+c

﹣2

1

2

1

﹣2

請(qǐng)判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個(gè)根x1 , x2的取值范圍是下列選項(xiàng)中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2
C.﹣ <x1<0,2<x2
D.﹣1<x1<﹣ <x2<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)D在BC邊上,有下列三個(gè)關(guān)系式:
① BAC=90°,② = ,③AD⊥BC.
選擇其中兩個(gè)式子作為已知,余下的一個(gè)作為結(jié)論,寫出已知,求證,并證明.
已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)m,n是實(shí)數(shù)且滿足m﹣n=mn時(shí),就稱點(diǎn)Q(m, )為“奇異點(diǎn)”,已知點(diǎn)A、點(diǎn)B是“奇異點(diǎn)”且都在反比例函數(shù)y= 的圖象上,點(diǎn)O是平面直角坐標(biāo)系原點(diǎn),則△OAB的面積為( )
A.1
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,且其中一個(gè)等腰三角形的底角是另一個(gè)等腰三角形底角的2倍,我們把這條對(duì)角線叫做這個(gè)四邊形的黃金線,這個(gè)四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對(duì)角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個(gè)內(nèi)角的度數(shù);
(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請(qǐng)?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對(duì)角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點(diǎn),則y1<y2其中結(jié)論正確的是(
A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,則△EBG的周長(zhǎng)是cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案