【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),DG⊥CE,點(diǎn)G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=66°,求∠BCE的度數(shù).

【答案】
(1)證明:如圖,

∵G是CE的中點(diǎn),DG⊥CE,

∴DG是CE的垂直平分線,

∴DE=DC,

∵AD是高,CE是中線,

∴DE是Rt△ADB的斜邊AB上的中線,

∴DE=BE= AB,

∴DC=BE;


(2)解:∵DE=DC,

∴∠DEC=∠BCE,

∴∠EDB=∠DEC+∠BCE=2∠BCE,

∵DE=BE,

∴∠B=∠EDB,

∴∠B=2∠BCE,

∴∠AEC=3∠BCE=66°,則∠BCE=22°.


【解析】(1)由G是CE的中點(diǎn),DG⊥CE得到DG是CE的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到DE=DC,由DE是Rt△ADB的斜邊AB上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到DE=BE= AB,即可得到DC=BE;(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根據(jù)三角形外角性質(zhì)得到∠EDB=∠DEC+∠BCE=2∠BCE,則∠B=2∠BCE,由此根據(jù)外角的性質(zhì)來(lái)求∠BCE的度數(shù).
【考點(diǎn)精析】本題主要考查了直角三角形斜邊上的中線的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我區(qū)兒童公園北門處有一座石拱橋,如圖,石拱橋的橋頂?shù)剿娴木嚯xCD為8cm,拱橋半徑OC為5cm,求水面寬AB為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形均是一些科技創(chuàng)新公司標(biāo)志圖,其中既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把等腰直角放在直角坐標(biāo)系內(nèi),其中,點(diǎn)、的坐標(biāo)分別為,將等腰直角沿軸向右平移,當(dāng)點(diǎn)落在直線上時(shí),則線段掃過(guò)的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD、CE相交于點(diǎn)O,再連接AO、BC,若∠1=2,則圖中全等三角形共有( 。

A. 5對(duì) B. 6對(duì) C. 7對(duì) D. 8對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 、 、1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹(shù)形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個(gè)游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)用概率知識(shí)解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,E8,0),F(0 , 6)

1)當(dāng)G(4,8)時(shí),則∠FGE= °

2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點(diǎn)P,使∠FPE=90°且四邊形OEPF被過(guò)P點(diǎn)的一條直線分割成兩部分后,可以拼成一個(gè)正方形.

要求:寫出點(diǎn)P點(diǎn)坐標(biāo),畫出過(guò)P點(diǎn)的分割線并指出分割線(不必說(shuō)明理由,不寫畫法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,A=∠ACBCDACB的平分線,ADC=150°,則ABC的度數(shù)為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)m滿足m2﹣m﹣2=0,當(dāng)m=時(shí),函數(shù)y=xm+(m+1)x+m+1的圖象與x軸無(wú)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案