【題目】某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案:一戶家庭的月均用水量不超過(單位:)的部分按平價收費,超出的部分按議價收費.為此擬召開聽證會,以確定一個合理的月均用水量標準.通過抽樣,獲得了前一年1000戶家庭每戶的月均用水量(單位:),將這1000個數(shù)據(jù)按照,,…,分成8組,制成了如圖所示的頻數(shù)分布直方圖.
(1)寫出的值,并估計這1000戶家庭月均用水量的平均數(shù);(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表)
(2)假定該市政府希望70%的家庭的月均用水量不超過標準,請判斷若以(1)中所求得的平均數(shù)作為標準是否合理?并說明理由.
【答案】(1)100,14.72;(2)不合理,見解析
【解析】
(1)先確定a的值,然后求這些數(shù)據(jù)的加權平均數(shù)即可;
(2)由14.72在內,然后確定小于的戶數(shù),再求出小于的戶數(shù)占樣本的百分比,最后用這個百分比和70%相比即可說明.
解:(1)依題意得a=(1000-40-180-280-220-60-20)÷2=100.
這1000戶家庭月均用水量的平均數(shù)為:
,
∴估計這1000戶家庭月均用水量的平均數(shù)是14.72.
(2)不合理.理由如下:
由(1)可得14.72在內,
∴這1000戶家庭中月均用水量小于的戶數(shù)有
(戶),
∴這1000戶家庭中月均用水量小于的家庭所占的百分比是,
∴月均用水量不超過的戶數(shù)小于60%.
∵該市政府希望70%的家庭的月均用水量不超過標準,
而,
∴用14.72作為標準不合理.
科目:初中數(shù)學 來源: 題型:
【題目】某劇院舉行專場音樂會,成人票每張20元,學生票每張5元. 暑假期間,為了豐富廣大師生的業(yè)余文化生活,影劇院制定了兩種優(yōu)惠方案,方案一:購買一張成人票贈送一張學生票;方案二:按總價的90%付款. 某校有4名老師帶隊,與若干名(不少于4人)學生一起聽音樂會.設學生人數(shù)為人,(為整數(shù)).
(1)根據(jù)題意填表:
(2)設方案一付款總金額為元,方案二付款總金額為元,分別求,關于的函數(shù)解析式;
(3)根據(jù)題意填空:
①若用兩種方案購買音樂會的花費相同,則聽音樂會的學生有 人;
②若有60名學生聽音樂會,則用方案 購買音樂會票的花費少;
③若用一種方案購買音樂會票共花費了元,則用方案 購買音樂會票,使聽音樂的學生人數(shù)多.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一張矩形紙片ABCD,已知AB=8,AD=6,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在矩形ABCD的某一條邊上,則等腰三角形AEP的底邊上的高的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OAA1的直角邊OA在x軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點A2020的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在研究拋物線(為常數(shù))時,得到如下結論,其中正確的是( )
A.無論取何實數(shù),的值都小于0
B.該拋物線的頂點始終在直線上
C.當時,隨的增大而增大,則
D.該拋物線上有兩點,,若,,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強學生的安全意識,某校組織了次“安全如識”測試,閱卷后,校團委隨機抽取了部分學生的考卷進行了分析統(tǒng)計,發(fā)現(xiàn)測試成績(分)的最低分為60分.最高分為滿分100分.并繪制了如下不完整的統(tǒng)計圖表:
根據(jù)以上信息,解答下列問題:
(1)補全上面的統(tǒng)計圖表;
(2)所抽取學生的測試成績的中位數(shù)落在__________分數(shù)段內;
(3)已知該校共有2000名學生參加本次“安全知識”測試,請估計該校有多少名學生的測試成績不低于80分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且,將繞點D逆時針旋轉90°,得到. 若,則EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“數(shù)形結合”是一種重要的數(shù)學思維,觀察下面的圖形和算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9═25=52
解答下列問題:請用上面得到的規(guī)律計算:1+3+7+……+101=( 。
A.2601B.2501C.2400D.2419
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點,與軸交于點,拋物線經過兩點且與x軸的負半軸交于點.
求該拋物線的解析式;
若點為直線上方拋物線上的一個動點,當時,求點的坐標;
已知分別是直線和拋物線上的動點,當為頂點的四邊形是平行四邊形時,直接寫出所有符合條件的點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com