【題目】如圖,點(diǎn)P與點(diǎn)Q都在y軸上,且關(guān)于x軸對稱.

1)請畫出ABP關(guān)于x軸的對稱圖形ABQ(其中點(diǎn)A的對稱點(diǎn)用A表示,點(diǎn)B的對稱點(diǎn)用B表示);

2)點(diǎn)P、Q同時(shí)都從y軸上的位置出發(fā),分別沿l1、l2方向,以相同的速度向右運(yùn)動(dòng),在運(yùn)動(dòng)過程中是否在某個(gè)位置使得AP+BQAB成立?若存在,請你在圖中畫出此時(shí)PQ的位置(用線段PQ表示),若不存在,請你說明理由(注:畫圖時(shí),先用鉛筆畫好,再用鋼筆描黑).

【答案】1)△ABQ如圖1中所示.見解析;(2)如圖2中,PQ′的位置如圖所示.見解析.

【解析】

1)畫出A、B的對應(yīng)點(diǎn)A′、B′即可;
2)連接A′B交直線l2Q′,再畫出P′即可解決問題;

1ABQ如圖1中所示:分別A、B關(guān)于x軸對應(yīng)點(diǎn)A′、B′,順次連接A′、B′Q即可;

2)如圖2中,PQ的位置如圖所示.

連接A′B交直線l2Q′,過Q′P′Q′l1,垂足為P′,則PQ為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小瑩、小亮準(zhǔn)備參加中考模擬考試,學(xué)校規(guī)定考生每人占一個(gè)桌子,按考號人座.考號按如圖方式貼在桌子上,請回答下面的問題:

(1)小瑩的考號是13,小亮的考號是24,在圖中對應(yīng)的“□”,請用他們的名字分別標(biāo)出他們在考場內(nèi)座位的位置;

(2)某同學(xué)座位的位置在第a行和第b列的相交的“□”,用數(shù)對表示是(a,b,那么小瑩的位置用數(shù)對表示是( ),小亮的位置用數(shù)對表示是( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與坐標(biāo)軸交于A,B兩點(diǎn),在射線AO上有一點(diǎn)P,當(dāng)APB是以AP為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在菱形ABCD中,∠B=60°,MAB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BCD的路徑運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為xMP2=y,若yx的函數(shù)圖象大致如圖②所示,則菱形ABCD的周長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家樂福超市“端午節(jié)”舉行有獎(jiǎng)促銷活動(dòng):凡一次性購物滿200元者即可獲得一次搖獎(jiǎng)機(jī)會.搖獎(jiǎng)機(jī)是一個(gè)圓形轉(zhuǎn)盤,被分成16等分,搖中紅、黃、藍(lán)色區(qū)域,分獲一、二、三等獎(jiǎng),獎(jiǎng)金依次為48元、40元、32元.一次性購物滿200元者,如果不搖獎(jiǎng)可返還現(xiàn)金15元.

(1)搖獎(jiǎng)一次,獲一等獎(jiǎng)的概率是多少?

(2)小明一次性購物滿了200元,他是參與搖獎(jiǎng)劃算還是領(lǐng)15元現(xiàn)金劃算,請你幫他算算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知:ABCD,點(diǎn)E,F分別在AB,CD上,且OEOF

(1)求證:∠1+∠2=90°;

(2)如圖2,分別在OECD上取點(diǎn)G,H,使FO平分∠CFG,EO平分∠AEH,求證:FGEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中, 的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)的坐標(biāo)分別為、、,試解答下列問題:

1)畫出關(guān)于原點(diǎn)對稱的;

2)平移,使點(diǎn)移到點(diǎn),畫出平移后的并寫出點(diǎn)、的坐標(biāo);

3)在、、中, 與哪個(gè)圖形成中心對稱?試寫出其對稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AM=CMAD=CD,DM//BC,判斷△CMB的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面與通道平行),通道水平寬度8米, ,通道斜面 的長為6米,通道斜面的坡度.

(1)求通道斜面的長為 ;

(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面的坡度變緩,修改后的通道斜面的坡角為30°,求此時(shí)的長.(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案