【題目】如圖,正方形ABFG和正方形CDEF的頂點在邊長為1的正方形網(wǎng)格的格點上.

(1)建立平面直角坐標(biāo)系,使點B,C的坐標(biāo)分別為(0,0)(5,0),并寫出點A,D,E,F(xiàn),G的坐標(biāo);

(2)連接BECG相交于點H,BECG相等嗎?并計算∠BHC的度數(shù).

【答案】(1)作圖見解析,A(-3,4),D(8,1),E(7,4),F(xiàn)(4,3),G(1,7);(2)BHC=90°.

【解析】

(1)由題意可知點B為坐標(biāo)原點,據(jù)此畫出直角坐標(biāo)系,再根據(jù)原點坐標(biāo)分別寫出點A、D、EF、G的坐標(biāo)即可解答.
(2)連接BECG相交于點H,根據(jù)勾股定理可求出BECG的長度,再用幾何工具測量出∠BHC的度數(shù)即可解答.

(1)按已知條件建立平面直角坐標(biāo)系(如圖),A(3,4),D(8,1)E(7,4),F(43),G(1,7)

(2)連接BECG相交于點H,

由題意,得BECG,所以BECG.

借助全等及三角形內(nèi)角和等性質(zhì)可得∠BHC的度數(shù):∠BHC90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校實施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機抽取若干學(xué)生進行了我最想選的一門課調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表(不完整)

選修課

A

B

C

D

E

F

人數(shù)

20

30

根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯誤的是(

A. 這次被調(diào)查的學(xué)生人數(shù)為200 B. 扇形統(tǒng)計圖中E部分扇形的圓心角為72°

C. 被調(diào)查的學(xué)生中最想選F的人數(shù)為35 D. 被調(diào)查的學(xué)生中最想選D的有55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點B的坐標(biāo)是(﹣1,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.

(1)求拋物線的解析式;
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,寫出點P的坐標(biāo)(不要求寫解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求證:此一元二次方程恒有實數(shù)根.
(2)無論k為何值,該方程有一根為定值,請求出此方程的定值根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進價為每件20元,售價為每件25元時,每天可賣出250件.市場調(diào)查反映:如果調(diào)整價格,一件商品每漲價1元,每天要少賣出10件.
(1)求出每天所得的銷售利潤w(元)與每件漲價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該商品每天的銷售利潤最大;
(3)商場的營銷部在調(diào)控價格方面,提出了A,B兩種營銷方案.
方案A:每件商品漲價不超過5元;
方案B:每件商品的利潤至少為16元.
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+bx﹣5的圖象的對稱軸是經(jīng)過點(2,0)且平行于y軸的直線,則關(guān)于x的方程x2+bx=5的解為( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成3個扇形,分別標(biāo)有1、2、3三個數(shù)字,小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲,當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時重轉(zhuǎn)).

(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)兩次轉(zhuǎn)盤,第一次轉(zhuǎn)得的數(shù)字記為m,第二次記為n,A的坐標(biāo)為(m,n),則A點在函數(shù)y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:

ADBC;②∠BDCBAC;③∠ADC90°-∠ABD; ④BD平分∠ADC

其中正確的結(jié)論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案