【題目】完成下面的說(shuō)理過(guò)程:如圖,在四邊形中,,分別是,延長(zhǎng)線上的點(diǎn),連接,分別交,于點(diǎn),.已知,.對(duì)和說(shuō)明理由.
理由:(已知),
(______),
(等量代換).
(______).
(______).
(______),
(______).
(______).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC=10,D為BC邊上的中點(diǎn),BD=6,連接AD.
(1)尺規(guī)作圖:作AC邊的中垂線交AD于點(diǎn)P;(保留作圖痕跡,不要求寫作法和證明)
(2)連接CP,求△DPC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價(jià)格在30元至80元之間(含30元和80元),銷售過(guò)程中的管理、倉(cāng)儲(chǔ)、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬(wàn)元,其銷售量y(萬(wàn)個(gè))與銷售價(jià)格(元/個(gè))的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時(shí),求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤(rùn)w(萬(wàn)元)與銷售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式;
(3)銷售價(jià)格應(yīng)定為多少元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩棟居民樓之間的距離CD=30米,樓AC和BD均為10層,每層樓高3米.
(1)上午某時(shí)刻,太陽(yáng)光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?
(2)當(dāng)太陽(yáng)光線與水平面的夾角為多少度時(shí),B樓的影子剛好落在A樓的底部.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程(組)解應(yīng)用題:2019年11月2日-4日,江西省中小學(xué)生研學(xué)實(shí)踐教育推進(jìn)會(huì)和全國(guó)中小學(xué)綜合實(shí)踐活動(dòng)(研學(xué)實(shí)踐教育)論壇相繼在撫州舉行.為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動(dòng)適應(yīng)社會(huì),促進(jìn)書本知識(shí)和生活經(jīng)驗(yàn)的深度融合,撫州市某中學(xué)決定組織部分班級(jí)去仙蓋山開展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸的正半軸上,反比例函數(shù)y= 在第一象限的圖象分別交矩形OABC的邊AB、BC邊點(diǎn)于E、F,已知BE=2AE,四邊形的OEBF的面積等于12.
(1)求k的值;
(2)若射線OE對(duì)應(yīng)的函數(shù)關(guān)系式是y=,求線段EF的長(zhǎng);
(3)在(2)的條件下,連結(jié)AC,試證明:EF∥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如下材料,然后解答后面的問題:已知直線l1:y=﹣2x﹣2和直線l2:y=﹣2x+4如圖所示,可以看到直線l1∥l2,且直線l2可以由直線l1向上平移6個(gè)長(zhǎng)度單位得到,直線l2可以由直線l1向右平移3個(gè)長(zhǎng)度單位得到.這樣,求直線l2的函數(shù)表達(dá)式,可以由直線l1的函數(shù)表達(dá)式直接得到.即:如果將直線l1向上平移6的長(zhǎng)度單位后得到l2,得l2的函數(shù)表達(dá)式為:y=﹣2x﹣2+6,即y=﹣2x+4;如果將直線l1向右平移3的長(zhǎng)度單位后得到得l2,l2的函數(shù)表達(dá)式為:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.
(1)將直線y=2x﹣3向上平移2個(gè)長(zhǎng)度單位后所得的直線的函數(shù)表達(dá)式是 ;
(2)將直線y=3x+1向右平移m(m>0)兩個(gè)長(zhǎng)度單位后所得的直線的函數(shù)表達(dá)式是 ;
(3)已知將直線y=x+1向左平移n(n>0)個(gè)長(zhǎng)度單位后得到直線y=x+5,則n= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)C(2,1)分別作x軸、y軸的平行線,交直線y=﹣x+4于B、A兩點(diǎn),若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且頂點(diǎn)在矩形ADBC內(nèi)(包括邊上),則a的取值范圍是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com